
cba Dr. Arne Babenhauserheide / draketo.de

Naming and Logic
programming essentials with Wisp

and a three-foldand a three-fold
Zen for SchemeZen for Scheme

Find the heart
of programming
with the map of
Scheme.

To follow along,
install Wisp and
try the examples
as you read.

Best practices in
Lisp with fewer
parentheses.

https://www.draketo.de
https://www.draketo.de/software/wisp.html

Contents

i Preface 5

ii The Map of Scheme 6

1 Name a value with define 8

2 Add comments with ; 8

3 Compare numbers 9

4 Use infix in logic 10

5 Use logic with true and false 11

6 Use named values in logic 12

7 Name the result of logic with indentation 12

8 Name logic with define : 13

9 Name a name using define with . 14

10 Return the value of logic with . 14

11 Name inside define : with define 15

12 Name the result of logic in one line with : or () 16

13 Name text with " 17

14 Take decisions with cond 18

15 Use fine-grained numbers with number-literals 19

16 Use exact numbers with #e and quotients 19

2/64

17 Turn exact numbers into decimals with exact->inexact 20

18 Use math with the usual operators as logic 21

19 Return a list of values with list 22

20 Import pre-defined named logic and values with import 23

21 Optimize for performance with ,profile 24

22 Get the result of logic inline with parentheses (),
braces {}, or colon : 25

23 Compare structural values with equal? 26

24 Apply logic to a list of values with apply 27

25 Get the arguments of named logic as list with . rest 28

26 Change the value or logic of a defined name with set! 29

27 Apply logic to each value in lists and ignoring the
results with for-each 29

28 Get the result of applying logic to each value in lists
with map 30

29 Create nameless logic with lambda 31

30 Reuse your logic with let-recursion 32

31 Extend a list with cons 34

32 Mutate partially shared state with list-set! 35

33 Get and resolve names used in code with quote, eval,
and module-ref 36

3/64

34 Apply partial procedures with srfi :26 cut 38

35 Use r7rs datatypes, e.g. with vector-map 39

36 Name structured values with define-record-type 40

37 Create your own modules with define-module 41

38 Handle errors using with-exception-handler 42

39 Debug with backtraces 43

40 Define derived logic structures with define-syntax-rule 44

41 Build value-lists with quasiquote and unquote 46

42 Merge lists with append or unquote-splicing 48

43 Test your code with srfi 64 49

44 Document procedures with docstrings 50

45 Read the docs 51

46 Create a manual with texinfo 52

47 Track changes with a version tracking system like
Mercurial or Git 54

48 Package with autoconf and automake 55

49 Deploy a project to users 59

4/64

i Preface

Why this book? To provide a concise start, a no-frills, opinionated
intro to programming from first define to deploying an application
on just 64 short pages.

Who is it for? You are a newcomer and want to learn by trying
code examples? You know programming and want a running start
into Scheme? You want to see how little suffices with Scheme’s practical
minimalism? Then this book is for you.

What is Wisp? Wisp is the simplest possible indentation based
syntax which is able to express all possibilities of Lisp. It is included
in Guile Scheme, the official extension language of the GNU project.

»best I’ve seen; pythonesque, hides parens but keeps power«
— Christine Lemmer-Webber, 2015

How to get Wisp? Download and install Wisp from the website
www.draketo.de/software/wisp — then open the REPL by executing
wisp in the terminal. The REPL is where you type and try code inter-
actively. Or install Guile 3.0.10+ and run guile --language=wisp
or guile3.0 --language=wisp. This text assumes GNU Linux.

Text, Design, and Publishing: Arne Babenhauserheide,
Karlsruher Str. 85,
76676 Graben-Neudorf
arne_bab@web.de

License: Creative Commons: Attribution - Sharealike.
Code examples also under any Free Software license.

Production: epubli – ein Service der neopubli GmbH,
Köpenicker Straße 154a, 10997 Berlin

Contact according to EU product safety regulation:
produktsicherheit@epubli.com

5/64

https://creativecommons.org/licenses/by-sa/4.0/

ii The Map of Scheme

6/64

7/64

1 Name a value with define

Use define to name a value. Use . to return a value.

define small-tree-height-meters 3
define large-tree-height-meters 5
. small-tree-height-meters

After typing code in the REPL, hit enter three times. It returns:

$1 = 3

This means: the first returned value ($1) is 3. The next time you
return a value, it will be called $2.

Names can contain any letter except for (white-)space, quote, comma
or parentheses. They must not be numbers.

define illegal name 1
define 'illegal-name 2
define ,illegal-name 3
define illegal)name 4
define 1113841 5

2 Add comments with ;

define birch-height/m 3
;; this is a comment
define height ;; comment at the end

;; comment between lines
. 5 ; return the value to define

It is common to use ;; instead of ;, but not required.

A comment goes from the first ; to the end of the line.

8/64

3 Compare numbers

= 3 5

$1 = #f

= 3 3

$1 = #t

#t means true, #f means false.

Returns the result of logic without needing a period (.).

The logic comes first. This is clear for =, but easy to misread for <.

< 3 5 ;; is 3 smaller than 5? #true
< 5 3 ;; is 5 smaller than 3? #false
> 3 5 ;; is 3 bigger than 5? #false
> 5 3 ;; is 5 bigger than 3? #true

> 3 3 ;; is 3 bigger than 3? #false
>= 3 3 ;; is 3 bigger than or equal to 3? #true
<= 3 3 ;; is 3 smaller than or equal to 3? #true

$1 = #t
$2 = #f
$3 = #f
$4 = #t
$5 = #f
$6 = #t
$7 = #t

9/64

4 Use infix in logic

. {3 = 5}

. {3 < 5}

. {3 > 5}

$1 = #f
$2 = #t
$3 = #f

Infix logic gives a value, so you need . to return it.

You can only use curly braces for infix operations.

Because infix-logic gives a value, you can use infix-logic in place of a
value, for example to nest it:

. {{5 < 3} equal? #f}

$1 = #t

Or to name it as value:

define is-math-sane? {3 < 5}
. is-math-sane?

$1 = #t

By convention, names that have the value true or false have the
suffix ?.

10/64

5 Use logic with true and false

and #t #t
and #f #t
or #f #t
or #f #f

$1 = #t
$2 = #f
$3 = #t
$4 = #f

If any value passed to and is #f (#false), it ignores further values.
If any value passed to or is not #f (not #false), it ignores further
values.

and #t #t #t ;; => #true
and #t #f #t ;; => #false
and {3 < 5} {5 < 3} ;; => #false
or #t #f #t ;; => #true
or {3 < 5} {5 < 3} ;; => #true
or #f #f #f ;; => #false

$1 = #t
$2 = #f
$3 = #f
$4 = #t
$5 = #t
$6 = #f

For and and or, everything is #true (#t) except for #false (#f). Given
the number of hard to trace errors in other languages that turn up in
production, this is the only sane policy.

11/64

6 Use named values in logic

define small-tree-height/m 3
define large-tree-height/m 5
. {small-tree-height/m < large-tree-height/m}

$1 = #t

7 Name the result of logic with indentation

define birch-h/m 3
define chestnut-h/m 5
define same-height?

= birch-h/m chestnut-h/m
define smaller?

. {birch-h/m < chestnut-h/m} ;; infix
. smaller?

$1 = #t

The more indented line returns its value to the previous, less indented
line.

The infix gives a value, so it needs the . as prefix to return the value.

12/64

8 Name logic with define :

define : same-height? tree-height-a tree-height-b
= tree-height-a tree-height-b

same-height? 3 3
;; also works with infix
. {3 same-height? 3}

$1 = #t
$2 = #t

By convention, logic that returns true or false has the suffix ?. You
can use your own named logic like all other logic. Even with infix.

What this map of Scheme calls named logic is commonly called
function or procedure. We’ll mostly stick with logic for the
sake of a leaner conceptual mapping.

The first word is the name of the logic. The others are the arguments
the logic operates on. The indented lines with the logic named here
are called the body. The body of named logic can have multiple lines.
Only the value of the last is returned.

define : unused-comp value
= 2 value ;; not returned
= 3 value ;; returned

unused-comp 2
unused-comp 3

$1 = #f
$2 = #t

13/64

9 Name a name using define with .

define small-tree-height-meters 3
define height

. small-tree-height-meters
. height

$1 = 3

After you name a name, the new name holds the same value as the
original name.

. returns the value of its line.

10 Return the value of logic with .

define : larger-than-4? size
. {size > 4}

. larger-than-4?

$1 = #<procedure larger-than-4? (size)>

The value of logic defined with define : is a procedure — often
called proc for brevity. You can see the arguments in the output: If
you call it with too few or too many arguments, you get errors.

There are other kinds of logic: syntax rules and reader-macros. We
will cover syntax rules later. New reader macros are rarely needed;
using {...} for infix math is a reader macro.

14/64

11 Name inside define : with define

define birch-h/m 3
define : birch-is-small

define reference-h/m 4
. { birch-h/m < reference-h/m }

birch-is-small

$1 = #t

Only the last part of the body of define : is returned.

Note the . in front of the { birch-h/m < reference-h/m }: a calcu-
lation inside braces is executed in-place. It is its result, so its value
needs to be returned.

Zen for SchemeZen for Scheme

A Zen for Scheme part 1: Birds Eye

RR Remove limitations to Reduce the feature-count you need,
but OM: Optimizability Matters.

FI Freedom for Implementations and from Implementations,
but CM: Community Matters: Join the one you choose.

SL Mind the Small systems!
And the Large systems!

ES Errors should never pass silently,
unless speed is set higher than safety.

Thanks for the error-handling principle goes to John Cowan.

15/64

12 Name the result of logic in one line with :
or ()

define birch-h/m 3
define chestnut-h/m 5

define same-height? : = birch-h/m chestnut-h/m
. same-height?
define same-height-again? (= birch-h/m chestnut-h/m)
. same-height-again?

$1 = #f
$2 = #f

This is consistent with infix-math and uniform with defining logic:

define birch-h/m 3
define chestnut-h/m 5

define same-height? {birch-h/m = chestnut-h/m}
. same-height?
;; define logic
define : same? tree-height-a tree-height-b

= tree-height-a tree-height-b
;; using the defined logic looks like defining it
define same2? : same? birch-h/m chestnut-h/m
. same2?

$1 = #f
$2 = #f

16/64

13 Name text with "

define tree-description "large tree"
define footer "In Love

Arne"
define greeting

. "Hello"
display footer

In Love

Arne

Like { }, text (called string as in “string of characters”) is its value.

Text can span multiple lines. Line breaks in text do not affect the
meaning of code.

You can use \n to add a line break within text without having a visual
line break. The backslash (\) is the escape character and \n represents
a line break. To type a real \ within quotes ("), you must escape it
as \\.

Text is stronger than comments:

define with-comment ;; belongs to coment
;; comment
. "Hello ;; part of the text"

. with-comment

$1 = "Hello ;; part of the text"

Return the value with . to name text on its own line.

With display you can show text as it will look in an editor.

17/64

14 Take decisions with cond

define chestnut-h/m 5
define tree-description

cond
{chestnut-h/m > 4} ;; condition

. "large tree" ;; result
: = 4 chestnut-h/m ;; check returned value

. "four meter tree"
else

. "small tree"
. tree-description

$1 = "large tree"

cond checks its clauses one by one and uses the first with value #true.
To cond every valid value is #true (#t) except for #false (#f).

cond
5

. #t
else ;; else is #true in cond

. #f
cond

#f #f ;; can put the value directly
else #t ;; on the same line, if not using :

$1 = #t
$2 = #t

To use named logic, prefix it with : or enclose it in parentheses ()
for prefix or braces {} for infix to check its value. : needs a line-break
after the condition.

18/64

15 Use fine-grained numbers with
number-literals

define more-precise-height 5.32517
define 100-meters 1e2 ;; 1 times 10 to the power of 2
. more-precise-height
. 100-meters

$1 = 5.32517
$2 = 100.0

These are floating point numbers. They store approximate values in
64 bit binary, depending on the platform. Read the details in the
Guile Reference manual section Real and Rational Numbers, the r5rs
numbers, and IEEE 754.1

16 Use exact numbers with #e and quotients

define exactly-1/5 #e0.2
define exactly-1/5-too 1/5
. exactly-1/5
. exactly-1/5-too

$1 = 1/5
$2 = 1/5

Guile computations with exact numbers stay reasonably fast even for
unreasonably large or small numbers.

1All links are listed on page 64.

19/64

https://www.gnu.org/software/guile/manual/html_node/Reals-and-Rationals.html
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://ieeexplore.ieee.org/document/8766229

17 Turn exact numbers into decimals with
exact->inexact

exact->inexact #e0.2
exact->inexact 1/5
exact->inexact -2e7

$1 = 0.2
$2 = 0.2
$3 = -2.0e7

The inverse is inexact->exact:

inexact->exact 0.5

$1 = 1/2

Note that a regular 0.2 need not be exactly 1/5, because floating point
numbers do not have an exact representation for that. You’ll need #e
to have precise 0.2.

inexact->exact 0.2
. #e0.2

$1 = 3602879701896397/18014398509481984
$2 = 1/5

20/64

18 Use math with the usual operators as logic

define one-hundred
* 10 10 ;; multiply with *

define half-hundred : / one-hundred 2 ;; divide with /
. half-hundred

$1 = 50

Remember that names cannot be valid numbers!

define 100 ;; error!
+ 90 10

While compiling expression:
Syntax error:
unknown location: source expression failed to match any

pattern in form (define 100 (+ 90 10))↪→

Using infix via curly braces {} is useful for math:

define one-hundred {10 * 10}
define half-hundred {one-hundred / 2}
. half-hundred ;; tallest northern red oak

$1 = 50

21/64

19 Return a list of values with list

list 3 5
define known-heights

list 3 3.75 5 100
. known-heights

$1 = (3 5)
$2 = (3 3.75 5 100)

You can put values on their own lines by returning their value:
. returns all the values in its line. Different from define :, list keeps
all values, not just the last.

define known-heights-2
list 3

. 3.75 5

. 100
define known-heights-3

list
. 3
. 3.75
. 5
. 100

define : last-height
. 3 3.75 5 100 ;; only the last (100) is returned

= 100 : last-height
. known-heights-3

$1 = #t
$2 = (3 3.75 5 100)

22/64

20 Import pre-defined named logic and values
with import

import : ice-9 pretty-print
srfi :1 lists ;; no space after the :

pretty-print ;; format a structure nicely
list 12 : list 34

. 5 6
first : list 1 2 3 ;; 1
second : list 1 2 3 ;; 2
third : list 1 2 3 ;; 3
member 2 : list 1 2 3 ;; includes 2 => 2 3 => #true

(12 (34) 5 6)
$1 = 1
$2 = 2
$3 = 3
$4 = (2 3)

Import uses modules which can have multiple components. In the first
import, ice-9 is one component and the second is pretty-print. In
the second, srfi is the first component, :1 is the second, and lists
is the third.

ice-9 is the name for the core extensions of Guile. It’s a play on ice-nine,
a fictional perfect seed crystal.

SRFI’s are Scheme Requests For Implementation, portable libraries
built in collaboration between different Scheme implementations. The
ones available in Guile can be found in the SRFI chapter of the Guile
Reference Manual. More can be found on srfi.schemers.org. They are
imported by number (:1) and can have a third component with a
name, but that’s not required.

23/64

https://en.wikipedia.org/wiki/Ice-nine?oldid=1204900352
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://srfi.schemers.org/

You can use only to import only specific names.

import : only (srfi :1) first ;; no second

first : list 1 2 3 ;; 1
second : list 1 2 3 ;; error

$1 = 1
ice-9/boot-9.scm:1705:22: In procedure raise-exception:
Unbound variable: second

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

21 Optimize for performance with ,profile

When in the interactive REPL, you can get a runtime profile. Fast
operations may need to be run in a loop to get a robust sample:

define runs : iota 1000000 ;; numbers from 0 to 999999
,profile for-each number->string runs

% cumulative self
time seconds seconds procedure
50.00 0.13 0.07 ice-9/boot-9.scm:260:2:for-each
50.00 0.07 0.07 number->string

Sample count: 4
Total time: 0.132540664 seconds (0.111396361 seconds in GC)

To look deeper, use ,disassemble.
In code files import : statprof.

24/64

22 Get the result of logic inline with
parentheses (), braces {}, or colon :

list 1 2 (+ 1 2) 4
list 1 2 {1 + 2} 4
list 1 2 : + 1 2

. 4 ;; use . to continue the arguments after :

$1 = (1 2 3 4)
$2 = (1 2 3 4)
$3 = (1 2 3 4)

Line breaks and indentation are ignored inside parentheses, except for
the value of text (strings).

The operators that need linebreaks are disabled inside parentheses:
colon : and period . neither get the value nor return it, but the last
value is returned implicitly. This is the default in regular Scheme.

: needs linebreaks, because it only goes to the end of the line.

. needs linebreaks, because it only applies at the beginning of the line
(after indentation).

Zen for SchemeZen for Scheme

A Zen for Scheme part 2: On the Ground

HA Hygiene reduces Anxiety,
except where it blocks your path.

PP Practicality beats Purity,
except where it leads into a dead end.

3P 3 Pillars of improvement:
Experimentation, Implementation, Standardization.

25/64

23 Compare structural values with equal?

define known-heights
list 3 3.75 5 100

define known-heights-2
list 3 3.75 5

. 100
define known-heights-3

list
. 3 3.75
. 5 100

= 3 3 3
equal? known-heights known-heights-2 known-heights-3

$1 = #t
$2 = #t

equal? compares whether all values it receives are equal. For struc-
tural values like lists, being equal means that all contained elements
have equal value and are in the same order.

Like = and +, equal? can be used on arbitrary numbers of values.

26/64

24 Apply logic to a list of values with apply

apply = : list 3 3
equal?

= 3 3
apply =

list 3 3

$1 = #t
$2 = #t

Only the last argument of apply is treated as list, so you can give
initial arguments:

define a 1
define b 1
apply = a b

list 1 1 ;; the same as = 1 1 1 1

$1 = #t

Using apply proc a (list b c) has the same result as calling proc
with the arguments a b c:

define : proc x y z
< x y z

apply proc 1 : list 2 3
proc 1 2 3

$1 = #t
$2 = #t

27/64

25 Get the arguments of named logic as list
with . rest

define : same? heights
apply = heights

same? : list 1 1 1 ;; needs a list to use apply
same?

list 1 1 1
define : same2? . heights

apply = heights
same2? 1 1 1 ;; takes values directly
same2?

. 1 1 1

$1 = #t
$2 = #t
$3 = #t
$4 = #t

These are called rest. Getting them is not for efficiency: the list cre-
ation is implicit. You can mix regular arguments and rest arguments:

define : same? alice bob . rest
display : list alice bob rest
newline
apply = alice bob rest

same? 1 1 1 1 ;; 4 arguments, the last 2 are rest

(1 1 (1 1))
$1 = #t

Remember that apply uses only the last of its arguments as list, in
symmetry with . rest.

28/64

26 Change the value or logic of a defined name
with set!

define birch-h/m 3
set! birch-h/m 3.74
. birch-h/m
set! birch-h/m =
. birch-h/m

$1 = 3.74
$2 = #<procedure = (#:optional _ _ . _)>

It is common to suffix logic with ! if it changes values of names.

Since logic can cause changes to names and not just return a result, it
is not called function, but procedure; proc for brevity.

27 Apply logic to each value in lists and
ignoring the results with for-each

define birch-h/m 3
define includes-birch-height #f
define : set-true-if-birch-height! height/m

cond
{birch-h/m = height/m}

set! includes-birch-height #t
define heights : list 3 3.75 5 100
for-each set-true-if-birch-height! heights
. includes-birch-height

$1 = #t

29/64

28 Get the result of applying logic to each
value in lists with map

define birch-h/m 3
define : same-height-as-birch? height/m

= birch-h/m height/m
define heights : list 3 3.75 5 100
. heights
map same-height-as-birch?

. heights
map +

list 1 2 3
list 3 2 1

map list
list 1 2 3
list 3 2 1

$1 = (3 3.75 5 100)
$2 = (#t #f #f #f)
$3 = (4 4 4)
$4 = ((1 3) (2 2) (3 1))

When operating on multiple lists, map takes one argument from each
list. All lists must be the same length. To remember : apply extracts
the values from its last argument, map extracts one value from each
argument after the first. apply map list ... flips colums and rows:

apply map list
list : list 1 2 3

list 3 2 1

$1 = ((1 3) (2 2) (3 1))

30/64

29 Create nameless logic with lambda

define : is-same-height? a b
> a b ;; <- this is a mistake

. is-same-height?
is-same-height? 3 3
define : fixed a b

= a b
set! is-same-height? fixed
. is-same-height? ;; but now called "fixed" in output!
is-same-height? 3 3
;; shorter and avoiding name pollution and confusion.
set! is-same-height?

lambda : a b
= a b ;; must be on a new line

;; to not be part of the arguments.
;; since lambda has no name, we see the original again
. is-same-height?
is-same-height? 3 3

$1 = #<procedure is-same-height? (a b)>
$2 = #f
$3 = #<procedure fixed (a b)>
$4 = #t
$5 = #<procedure is-same-height? (a b)>
$6 = #t

The return value of lambda is logic (a procedure).

If logic is defined via define :, it knows the name it has been defined
as. With lambda, it does not know the name.

lambda is a special form. Think of it as define : name arguments,
but without the name.

31/64

30 Reuse your logic with let-recursion

Remember the for-each example:

define includes-birch-height #f
define heights : list 3 3.75 5 100
define : set-true-if-birch-height! height/m

define birch-h/m 3
cond

{birch-h/m = height/m}
set! includes-birch-height #t

for-each set-true-if-birch-height! heights
. includes-birch-height

$1 = #t

Instead of for-each, we can build our own iteration:

define heights : list 3 3.75 5 100
define : includes-birch-height? heights

define birch-h/m 3
let loop : : heights heights

cond
(null? heights) #f ;; done: not found
: = birch-h/m : car heights ;; car is first

. #t ;; done: one found
else

loop : cdr heights ;; drop the first, try again
includes-birch-height? heights

$1 = #t

null? asks whether the list is empty. car gets the first element of a
list, cdr gets the list without its first element.

32/64

Recursion is usually easier to debug (all variable elements are available
at the top of the let recursion) and often creates cleaner APIs than
iteration, because fewer names are visible from outside.

As rule of thumb: start with the recursion end condition (here: (null?
heights)) and ensure that each branch of the cond either ends recur-
sion by returning something (here #f or #t) or moves a step towards
finishing (usually with cdr, +, -, 1+, or 1-).

Another example in which recursion wins:

define : fib n
let rek : (i 0) (u 1) (v 1)

if : >= i {n - 2}
. v
rek {i + 1} v {u + v}

Zen for SchemeZen for Scheme

A Zen for Scheme part 3: Submerged in Code

WM Use the Weakest Method that gets the job done,
but know the stronger methods to employ them as needed.

RW Recursion Wins,
except where a loop-macro is clearer.

RM Readability matters,
and nesting works.

33/64

http://www.draketo.de/light/english/recursion-wins

31 Extend a list with cons

The core of composing elementwise operations.

To build your own map function, you need to add to a list. cons on a
list adds to the front (cons on other values creates a pair).

cons 1 : list 2 3 ;; => list 1 2 3
cons 1 2 ;; => (1 . 2) - also see pair? and assoc

$1 = (1 2 3)
$2 = (1 . 2)

Used for a simplified map implementation that takes a single list:

import : only (srfi :1) first
define : single-map proc elements

let loop : (changed (list)) (elements elements)
cond

: null? elements
reverse changed ;; restore the order

else
loop

;; add processed first element to changed
cons : proc : first elements ;; add processed

. changed ;; to changed
cdr elements ;; drop first element from elements

single-map even? : list 1 2 3

$1 = (#f #t #f)

Repeatedly cons’ing the first element of a list onto a second list and
dropping it from the first reverses the element order. It’s a core
operation, because it’s the most efficient operation for Scheme’s lists.

34/64

32 Mutate partially shared state with list-set!

The elements in a list are linked from its start. Different lists can share
the same tail when you cons onto the same partial list.

define tail ;; the shared tail
list 3 2 1 ;; 3 2 1

define four ;; an intermediate list
cons 4 tail ;; 4 3 2 1

define five ;; one more list
cons 5 four ;; 5 4 3 2 1

define fourtytwo ;; branching off from tail
cons 42 tail ;; 42 3 2 1

list-set! five 1 "four" ;; change shared state
. five ;; changed directly: 5 four 3 2 1
. four ;; touched indirectly ;; four 3 2 1
. fourtytwo ;; not affected ;; 42 3 2 1
list-set! tail 1 "two" ;; mutating the shared tail
. five ;; 5 four 3 two 1
. four ;; four 3 two 1
. fourtytwo ;; 42 3 two 1
. tail ;; 3 two 1

$1 = "four"
$2 = (5 "four" 3 2 1)
$3 = ("four" 3 2 1)
$4 = (42 3 2 1)
$5 = "two"
$6 = (5 "four" 3 "two" 1)
$7 = ("four" 3 "two" 1)
$8 = (42 3 "two" 1)
$9 = (3 "two" 1)

Mutating shared state often causes mistakes. Use it only when needed.

35/64

33 Get and resolve names used in code with
quote, eval, and module-ref

list : quote alice
quote bob
quote carol
quote dave

;; => (alice bob carol dave)

define alice "the first"

eval 'alice : current-module
;; => "the first"
module-ref (current-module) 'alice
;; => "the first"
;; module-ref is less powerful than eval. And safer.

define code
quote

list 1 2 3
. code
;; => (list 1 2 3)
;; uses a form with parentheses for display
eval code : current-module
;; => (1 2 3)

' 1 2 3
;; (1 2 3)
list 1 2 3
;; (1 2 3)

equal? : ' 1 2 3
list 1 2 3

36/64

$1 = (alice bob carol dave)
$2 = "the first"
$3 = "the first"
$4 = (list 1 2 3)
$5 = (1 2 3)
$6 = (1 2 3)
$7 = (1 2 3)
$8 = #t

The form ’ 1 2 3 is a shorthand to create an immutable (literal) list
that is equal? to list 1 2 3.

Some operations like list-set! the-list index new-value from
srfi :1 do not work on immutable lists.

define mutable-list : list 1 2 3
list-set! mutable-list 1 'a ;; zero-indexed: a replaces 2
. mutable-list
define immutable-list : ' 1 2 3
. immutable-list
list-set! immutable-list 1 'a ;; error!

$1 = a
$2 = (1 a 3)
$3 = (1 2 3)
ice-9/boot-9.scm:1705:22: In procedure raise-exception:
In procedure set-car!: Wrong type argument in position 1

(expecting mutable pair): (2 3)↪→

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

37/64

https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html

34 Apply partial procedures with srfi :26 cut

import : srfi :26 cut
define : plus-3 number

+ 3 number
map plus-3 : list 1 2 3 ;; => 4 5 6
define plus-3-cut : cut + 3 <> ;; the arg is used at <>
plus-3-cut 9 ;; => + 3 9 => 12

map : cut + 3 <> ;; defined inline
list 1 2 3 ;; => 4 5 6

map : cut - <> 1 ;; => {<> - 1}
list 1 2 3 ;; => 0 1 2

map : cut - 1 <> ;; => {1 - <>}
list 1 2 3 ;; => 0 -1 -2

$1 = (4 5 6)
$2 = 12
$3 = (4 5 6)
$4 = (0 1 2)
$5 = (0 -1 -2)

cut enables more concise definition of derived logic. These specialized
definitions also help to simplify and=>:

import : srfi :26 cut
and=> #f : cut + <> 3 ;; #f ;; and=> applies logic, if its
and=> 20 : cut + <> 3 ;; 23 ;; first argument is not #f

$1 = #f
$2 = 23

This method is known in mathematics as “currying“.

38/64

35 Use r7rs datatypes, e.g. with vector-map

R7RS is the 7th Revised Report on Scheme. Guile provides a super-
set of the standard: its core can be imported as scheme base. A
foundational datatype is Vector with O(1) random access guarantee.

import : scheme base
define vec : list->vector : ' 1 b "third"
. vec
vector-map : λ (element) : cons "el" element

. vec
vector-ref vec 0 ;; zero-indexed

$1 = #(1 b "third")
$2 = #(("el" . 1) ("el" . b) ("el" . "third"))
$3 = 1

Vectors have the literal form #(a b c). It is an error to mutate this.

import : scheme base
define mutable-vector : list->vector : ' 1 b "third"
define literal-vector #(1 b 3)
vector-set! mutable-vector 1 "bee" ;; allowed
vector-set! literal-vector 1 "bee" ;; error

ice-9/boot-9.scm:1705:22: In procedure raise-exception:
In procedure vector-set!: Wrong type argument in position

1 (expecting mutable vector): #(1 b 3)↪→

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

39/64

https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:__tex2page_sec_6.8

36 Name structured values with
define-record-type

import : srfi :9 records

define-record-type <tree>
make-tree kind height-m weight-kg carbon-kg
. tree?
kind tree-kind ;; the kind of tree, e.g. "birch"
height-m tree-height ;; the second argument is the
weight-kg tree-weight ;; name for the logic to get
carbon-kg tree-carbon ;; the value from the record

define birch-young
make-tree "birch" 13 90 45 ;; 10 year, 10cm diameter,

define birch-old
make-tree "birch" 30 5301 2650 ;; 50 year, 50cm

define birch-weights
map tree-weight : list birch-young birch-old

. birch-young

. birch-old

. birch-weights ;; 90 5301

$1 = #<<tree> kind: "birch" height-m: 13 weight-kg: 90
carbon-kg: 45>↪→

$2 = #<<tree> kind: "birch" height-m: 30 weight-kg: 5301
carbon-kg: 2650>↪→

$3 = (90 5301)

Carbon content in birch trees is about 46% to 50.6% of the mass. See
forestry commission technical paper 1993.

Height from Waldwissen, weight from BaumUndErde.

40/64

https://cdn.forestresearch.gov.uk/1993/09/fctp004.pdf
https://www.waldwissen.net/de/lebensraum-wald/baeume-und-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial
https://www.baumunderde.de/stammgewicht-rechner/

37 Create your own modules with define-module

To provide your own module, create a file named by the module name.
For import : example trees the file must be example/trees.w.
Use define-module and choose with #:export what gets imported:

define-module : example trees
. #:export ;; the following is exported
birch-young

. make-tree tree? tree-carbon ;; continued
import : srfi :9 records ;; imports after module
define-record-type <tree> ;; reduced record type

make-tree carbon-kg
. tree?
carbon-kg tree-carbon

define birch-young
make-tree 45 ;; about 10 years, 10cm diameter

To use that module, add your root folder to the search path. Then just
import it. To ensure that the file is run correctly, use shell-indirection:

#!/usr/bin/env bash
exec -a "${0}" guile --language=wisp \

-L "$(dirname "${0}")" -x .w "${0}" ${@}
;; Wisp execution !#
import : example trees
. birch-young

$1 = #f
$2 = #<<tree> carbon-kg: 45>

Make executable with chmod +x the-file.w, run with ./the-file.w

41/64

38 Handle errors using with-exception-handler

;; unhandled exception stops execution
define : add-5 input

+ 5 input ;; illegal for text
map add-5 : list "five" 6 "seven" ;; see the error
;; check inputs to avoid the exception
define : add-5-if input

if : number? input
+ 5 input
. #f

map add-5-if : list "five" 6 "seven"
;; handle exceptions
define : add-5-handler input

with-exception-handler
λ (e) : format #t "must be number, is ~S.\n" input

. #f ;; result in case of error
λ () : + 5 input
. #:unwind? #t ;; #t: continue #f: stop

map add-5-handler : list "five" 6 "seven"

$1 = #f
ice-9/boot-9.scm:1705:22: In procedure raise-exception:
In procedure +: Wrong type argument in position 1: "five"

Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.
$2 = (#f 11 #f)
must be number, is "five".
must be number, is "seven".
$3 = (#f 11 #f)

In Wisp checking inputs is often cheaper than exception handling.
Format replaces patterns (here: ~S) in text with values (here input).

42/64

39 Debug with backtraces

To find the cause of an exception, you can use backtraces. When you
see an error interactively, you get a backtrace with ,bt:

define : add-5 input
display : + 5 input ;; illegal for text

add-5 "six"

ice-9/boot-9.scm:1683:22: In procedure raise-exception:
In procedure +: Wrong type argument in position 1: "six"

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

wisp@(guile-user) [1]> ,bt

,bt

In current input:
1:0 1 (add-5 "six")

In ice-9/boot-9.scm:
1683:22 0 (raise-exception _ #:continuable? _)

The error comes from the first item (add-5 "six"), and it is thrown
in the file ice-9/boot-9.scm via raise-exception. When the error
comes from a file, you also get a file name and line number for the first
item. Most backtraces are longer.

The number in square brackets after the interactive error ([1]) is your
depth in the debugger. You can get one level back with ,q or CTRL-D
(when outside the debugger this exits from Guile).

To throw debuggable errors yourself, use raise-exception or scm-error.
Also see the chapter Exceptions in the Guile Reference Manual.

43/64

https://www.gnu.org/software/guile/manual/html_node/Exceptions.html

40 Define derived logic structures with
define-syntax-rule

In procedures, arguments are evaluated to their return value before
the body runs. Procedures evaluate from inside to outside:

import : ice-9 pretty-print
define : hello-printer . args

pretty-print "Hello"
for-each pretty-print args

hello-printer 1
pretty-print "second" ;; evaluated first
. 3 4

;; prints "second" "Hello" 1 3 4

"second"
"Hello"
1
#<unspecified>
3
4

The result of pretty-print is #<unspecified>

pretty-print "second" is evaluated before being passed to hello-
printer, so its result is shown first.

But for example cond only evaluates the required branches. It is not a
procedure, but a syntax-rule. Syntax-rules evaluate from outside
to inside:

44/64

import : ice-9 pretty-print
define-syntax-rule : early-printer args ...

begin
pretty-print "Hello" ;; <- evaluated first
for-each pretty-print : list args ...

early-printer 1
pretty-print "second" ;; "second" shown after "Hello"
. 3 4

;; prints "Hello" "second" 1 3 4

"Hello"
"second"
1
#<unspecified>
3
4

Arguments of define-syntax-rule are only evaluated when they
are passed into a regular procedure or returned. By calling other
syntax-rules in syntax-rules, evaluation can be delayed further.

define-syntax-rule can reorder arguments and pass them to other
syntax-rules and to procedures. It cannot ask for argument values,
because it does not evaluate names as values: it operates on names
and structure.

Instead of define : name . args, it uses a pattern with ...:

define-syntax-rule : name args ...

The ellipsis ... marks args as standing for zero or more names. It
must be used with the ellipsis as args

The body of define-syntax-rule must have only one element. The
logic begin wraps its own body to count as only one element. It returns
the value of the last element in its body.

45/64

41 Build value-lists with quasiquote and unquote

define : tree-with-list-cons type height weight
. "Create a tree with list and cons."
list : cons 'type type ;; cons-created pairs are

cons 'height height ;; more efficient that lists
cons 'weight weight ;; see pair? and assoc

tree-with-list-cons "birch" 13 90

define : tree-quasiquote type height weight
. "Create a tree with raw quasiquote and unquote."
quasiquote

:
type . : unquote type
height . : unquote height
weight . : unquote weight

tree-quasiquote "birch" 13 90

define : tree-shorthand type height weight
. "Create a tree with quasiquote/unquote shorthands."
` : type . ,type ;; ` is short for quasiquoted list

height . ,height ;; , is short for unquote
weight . ,weight

tree-shorthand "birch" 13 90

$1 = ((type . "birch") (height . 13) (weight . 90))
$2 = ((type . "birch") (height . 13) (weight . 90))
$3 = ((type . "birch") (height . 13) (weight . 90))

These three methods are almost equivalent, except that quasiquoting
can create an immutable list, but this is not guaranteed.

46/64

define three 3
define mutable-list : list 1 2 3
list-set! mutable-list 1 'a ;; zero-indexed
. mutable-list
define immutable-list : ` 1 2 3
list-set! immutable-list 1 'a ;; error!
. immutable-list
define mutable-quasiquoted : ` 1 2 ,three
list-set! mutable-quasiquoted 1 'a ;; currently no error!
. mutable-quasiquoted

$1 = a
$2 = (1 a 3)
ice-9/boot-9.scm:1705:22: In procedure raise-exception:
In procedure set-car!: Wrong type argument in position 1

(expecting mutable pair): (2 3)↪→

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

$3 = (1 2 3)
$4 = a
$5 = (1 a 3)

Mutating quasiquoted lists may throw an error in the future:

A quasiquote expression may return either newly allocated,
mutable objects or literal structure for any structure that
is constructed at run time . . . - the standard (r7rs)

47/64

https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#TAG:__tex2page_sec_4.2.8

42 Merge lists with append or unquote-splicing

define birch-carbon/kg '(5000 5301 5500)
define oak-carbon/kg '(7000 7700 8000)
;; append merges lists
append birch-carbon/kg

. oak-carbon/kg
;; unquote-splicing splices a list into quasiquote (`)
` : unquote-splicing birch-carbon/kg

unquote-splicing oak-carbon/kg
;; with shorthand ,@, note the leading period (.)
` ,@birch-carbon/kg

. ,@oak-carbon/kg

$1 = (5000 5301 5500 7000 7700 8000)
$2 = (5000 5301 5500 7000 7700 8000)
$3 = (5000 5301 5500 7000 7700 8000)

Unquote splicing can also insert the result of logic:

` : ,@ map 1- '(1 2 3)
,@ map 1+ : reverse '(0 1 2)
unquote-splicing : list 0

$1 = (0 1 2 3 2 1 0)

The shorthand ,@ can be used with parentheses, but the parentheses
must come after it and all calls inside must use parentheses:

` ,@(map 1- '(1 2 3))
. ,@(map 1+ (reverse '(0 1 2)))
. (unquote-splicing (list 0))

48/64

43 Test your code with srfi 64

Is your logic correct?

import : srfi :64 testsuite

define : tree-carbon weight-kg
* 0.5 weight-kg

define : run-tests
test-begin "test-tree-carbon"
test-equal 45.0

tree-carbon 90
test-approximate 45.0

+ 40 : random 10.0
. 5 ;; expected error size

test-assert : equal? 45.0 : tree-carbon 90 ;; #t
test-error : throw 'wrong-value
test-end "test-tree-carbon"

define result : run-tests

*** Entering test group: test-tree-carbon ***
* PASS:
* PASS:
* PASS:
* PASS:
*** Leaving test group: test-tree-carbon ***
*** Test suite finished. ***
*** # of expected passes : 4

You can use this anywhere to guard against mistakes.

For details, see srfi 64. Take care to test edge cases.

49/64

https://srfi.schemers.org/srfi-64/srfi-64.html

44 Document procedures with docstrings

define : documented-proc arg
. "Proc is documented"
. #f ;; documentation must not be the last element

procedure-documentation documented-proc
;; variables have no docstrings but
;; properties can be set manually.
define variable #f
set-object-property! variable 'documentation

. "Variable is documented" ;; returns the value it sets
object-property variable 'documentation

$1 = "Proc is documented"
$2 = "Variable is documented"
$3 = "Variable is documented"

You can get the documentation with help or ,d in the REPL:

,d documented-proc => Proc is documented
,d variable => Variable is documented

For generating documentation from comments, there’s guild doc-snarf.

;; Proc docs can be snarfed
define : snarfed-proc arg

. #f
;; Variable docs can be snarfed
define snarfed-variable #f

If this is saved as hello.w, get the docs via

wisp2lisp hello.w > hello.scm && \
guild doc-snarf --texinfo hello.scm

50/64

45 Read the docs

Now you understand the heart of code. With this as the core there is
one more step, the lifeblood of programming: learning more. Sources:

• The Guile Reference Manual

• The Guile Library

• Scheme Requests for Implementation (SRFI): tagged libraries

• The Scheme standards (RnRS), specifically r7rs-small (pdf)

• A list of tools and libraries

• Rosetta Code with solutions to many algorithm problems

Info manuals can often be read online, but the info commandline
application and info in Emacs (C-h i) are more efficient and provide
full-text search. You can use them to read the Guile Reference Manual
and some libraries. Get one by installing texinfo or Emacs.

In interactive wisp (the REPL), you can check documentation:

help string-append .

`string-append' is a procedure in the (guile) module.

- Scheme Procedure: string-append . args
Return a newly allocated string whose characters form the
concatenation of the given strings, ARGS.

,help

Help Commands [abbrev]:
...

Note: the full links are printed in the list of links on page 64.

51/64

https://www.gnu.org/s/guile/manual/guile.html
https://www.nongnu.org/guile-lib/doc/
https://srfi.schemers.org/
https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs.html
https://standards.scheme.org/unofficial/errata-corrected-r7rs.pdf
https://www.gnu.org/software/guile/libraries/
https://rosettacode.org/wiki/Category:Scheme
https://www.gnu.org/software/texinfo/
https://gnu.org/software/emacs

46 Create a manual with texinfo

Create a doc/ folder and add a hello.texi file.

An example file can look like the following:

\input texinfo
@documentencoding UTF-8
@settitle Hello World
@dircategory Hello World package
@direntry
* Hello: (hello). A hello world package.
@end direntry
@c This is a comment; The Top node is the first page
@node Top
@top
@menu
* First Steps::
* API Reference::
@end menu

@contents
@node First Steps
@chapter First Steps
@itemize
@item
Download from ...
@item
Install: @code{make}.
@end itemize

Example:
@lisp
(+ 1 2)
@result{} 3
@end lisp

52/64

@node API Reference
@chapter API Reference
@section Procedures
@subsection hello
Print Hello
@example
hello
@end example
@bye

Add a Makefile in the doc/ folder. Make sure to indent with tab.

all: hello.info hello.epub hello_html/index.html
hello.info: hello.texi

makeinfo hello.texi
hello.epub: hello.texi

makeinfo --epub hello.texi
hello_html/index.html: hello.texi

makeinfo --html hello.texi

Run make:

make

Read the docs with calibre or the browser or plain info:

calibre hello.epub & \
firefox hello_html/index.html & \
info -f ./hello.info

The HTML output is plain. You can adapt it with CSS by adding
--css-include=FILENAME or --css-ref=URL to makeinfo.

You can also write an Org Mode document and evaluate (require
’ox-texinfo) to activate exporting to texinfo.

53/64

https://orgmode.org

47 Track changes with a version tracking
system like Mercurial or Git

For convenience always start by initializing a version tracking reposi-
tory, for example using Mercurial or Git.

either Mercurial
hg init hello
or Git
git init hello
enter the repository folder
cd hello/

Now you can add new files with

in Mercurial
hg add FILE
in Git
git add FILE

And take a snapshot of changes with

in Mercurial
hg commit -m "a change description"
in Git
git commit -a -m "a change description"

It is good practice to always use a version tracking system.

For additional information and how to compare versions, go back in
time, or publish your code if you want to, see the Mercurial Guide or
the Git Tutorial.

54/64

https://mercurial-scm.org
https://git-scm.org
https://mercurial-scm.org/guide
https://git-scm.com/docs/gittutorial

48 Package with autoconf and automake

Create a configure.ac file with name, contact info, and version.

Project name, version, and contact information.
AC_INIT([hello], [0.0.1], [my-name@example.com])
Find a supported Guile version and set it as @GUILE@
GUILE_PKG([3.0])
GUILE_PROGS
GUILE_SITE_DIR
AC_PREFIX_PROGRAM([guile])
AM_INIT_AUTOMAKE([gnu])
create Makefile from Makefile.am
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Add a Makefile.am with build rules. Only the start needs to be edited:

bin_SCRIPTS = hello # program name
SUFFIXES = .w .scm .sh
WISP = hello.w # source files
hello: $(WISP)

echo "#!/usr/bin/env bash" > "$@" && \
echo 'exec -a "$$0" guile' \

'-L "$$(dirname "$$(realpath "$$0")")"' \
'-L "$$(dirname "$$(realpath

"$$0")")/../share/guile/site/3.0/"' \↪→

'--language=wisp -x .w -s "$$0" "$$@"' \
>> "$@" && echo ";; exec done: !#" >> "$@" && \

cat "$<" >> "$@" && chmod +x "$@"
info_TEXINFOS = doc/hello.texi
add library files, prefix nobase_ preserves directories
nobase_site_DATA =

55/64

The rest of the Makefile.am can be copied verbatim:

Makefile.am technical details

where to install guile modules to import. See
https://www.gnu.org/software/automake/manual/html_node/Alte ⌋

rnative.html↪→

sitedir = $(datarootdir)/guile/site/$(GUILE_EFFECTIVE_VERSION)

GOBJECTS = $(nobase_site_DATA:%.w=%.go) $(WISP:%.w=%.go)
nobase_go_DATA = $(GOBJECTS)
godir=$(libdir)/guile/$(GUILE_EFFECTIVE_VERSION)/site-ccache

Make sure that the mtime of installed compiled files
is greater than that of installed source files. See:
http://lists.gnu.org/archive/html/guile-devel/2010-07/msg00 ⌋

125.html↪→

The missing underscore before DATA is intentional.
guile_install_go_files = install-nobase_goDATA
$(guile_install_go_files): install-nobase_siteDATA

EXTRA_DIST = $(WISP) $(info_TEXINFOS) $(nobase_site_DATA)
AUTHORS ChangeLog↪→

CLEANFILES = $(GOBJECTS) $(wildcard *~)
DISTCLEANFILES = $(bin_SCRIPTS) $(nobase_site_DATA)

precompile all source files
.w.go:

GUILE_LOAD_COMPILED_PATH="/home/arne/Schreibtisch/arnebab ⌋

-org" \↪→

$(GUILE_TOOLS) compile --from=wisp $(GUILE_WARNINGS) \
-L "/home/arne/Schreibtisch/arnebab-org" -L

"/home/arne/Schreibtisch/arnebab-org" \↪→

-o "$@" "$<"

56/64

This assumes that the folder hello uses a Version tracking system.

Makefile.am basic additional files
.SECONDARY: ChangeLog AUTHORS
ChangeLog: ## create the ChangeLog from the history

echo "For user-visible changes, see the NEWS file" > "$@"
echo >> "$@"
if test -d ".git"; \

then cd "$(dirname "$(realpath .git)")" \
&& git log --date-order --date=short \
| sed -e '/^commit.*$/d' \
| awk '/^Author/ {sub(/\\$/,""); getline t; print $0

t; next}; 1' \↪→

| sed -e 's/^Author: //g' \
| sed -e \

's/\(.*\)>Date: \([0-9]*-[0-9]*-[0-9]*\)/\2
\1>/g' \↪→

| sed -e 's/^\(.*\) \(\)\t\(.*\)/\3 \1 \2/g' \
>> "$@"; cd -; fi

if test -d ".hg"; \
then hg -R "$(dirname "$(realpath .hg)")" \

log --style changelog \
>> "$@"; fi

AUTHORS: ## create the AUTHORS file from the history
touch "$@"
if test -d ".git"; \

then cd "$(dirname "$(realpath .git)")" \
&& git log --format='%aN' \
| sort -u >> "$@"; cd -; fi

if test -d ".hg"; \
then hg -R "$(dirname "$(realpath .hg)")" \

--config extensions.churn= \
churn -t "{author}" >> "$@"; fi

57/64

Now create a README and a NEWS file:

#+title: Hello

A simple example project.

* Requirements

- Guile version 3.0.10 or later.

* Build the project

#+begin_src bash
autoreconf -i && ./configure && make
#+end_src

* Create a distribution tarball

#+begin_src bash
autoreconf -i && ./configure && make dist
#+end_src

* License

GPLv3 or later.

hello 0.0.1

- initialized the project

And for the sake of this example a simple hello.w file:

display "Hello World!\n"

58/64

49 Deploy a project to users

Enable people to access your project as a webserver behind nginx, as
a clientside browser-app, or as a Linux package (Guix tarball).

Browser: as webserver. On the web no one knows you’re a Scheme.

Guile provides a webserver module. A minimal webserver:

import : web server
web request
web response
web uri

define : handler request body
define path : uri-path : request-uri request
values ;; these are what the browser sees

build-response
. #:headers `((content-type . (text/plain)))
. #:code 404

string-append "404 not found: " path ;; content
define v4 #t
;; choose either IPv4 or IPv6; to suport both, run twice.
run-server handler 'http

if v4 '(#:port 8081) '(#:family AF_INET6 #:port 8081)

An nginx SSL Terminator (/etc/nginx/sites-enabled/default):

server {
server_name domain.example.com;
location / {

proxy_pass http://localhost:8081;
}

}

Set up SSL support with certbot (this edits the config file).

59/64

https://www.gnu.org/s/guile/manual/guile.html#Web-Server
https://nginx.org/
https://certbot.eff.org/instructions?ws=nginx&os=pip

Browser again: clientside wasm. To run clientside, you can pack-
age your project with Hoot: build an interface and compile to wasm:

;; file: hoot.w
use-modules : hoot ffi ;; guile specific import

;; the interface
define-foreign document-body "document" "body"

. -> (ref null extern)
define-foreign make-text-node "document" "createTextNode"

. (ref string) -> (ref null extern)
define-foreign append-child! "element" "appendChild"

. (ref null extern) (ref null extern)

. -> (ref null extern)

;; your code
append-child! : document-body

make-text-node "Hello, world!"

Transpile with wisp2lisp and guild compile-wasm. If you run Guix:

guix shell guile guile-wisp -- \
wisp2lisp hoot.w > hoot.scm && \

guix shell guile-hoot guile-next -- \
guild compile-wasm -o hoot.wasm hoot.scm

Get reflection tools from Guile Hoot (licensed Apache 2.0) with Guix:

guix shell guile-hoot guile-next -- bash -c \
'cp $GUIX_ENVIRONMENT/share/*hoot/*/re*/{*.js,*.wasm} ./'

60/64

https://spritely.institute/hoot/

Load your interface (includes startup time optimizations):

/* file: hoot.js */
var f = window.fetch; window.fetch = (inp, ini) => f(inp,

{credentials: 'include', mode: 'no-cors', ...ini});
window.addEventListener("load", () =>

fetch("hoot.wasm").then(r => r.arrayBuffer())
.then(bytes => Scheme.load_main(bytes, {

user_imports: { // mapped via define-foreign
document: {

body() { return document.body; },
createTextNode: Document.prototype

.createTextNode.bind(document)
},
element: {

appendChild(parent, child) {
return parent.appendChild(child);}}}})));

Include reflect.js and hoot.js from a HTML page:

<!DOCTYPE html> <!-- file: hoot.html -->
<html><head><title>Hello Hoot</title>
<script type="text/javascript" src="reflect.js"></script>
<script type="text/javascript" src="hoot.js"></script>
<link rel="preload" as="fetch" href="hoot.wasm"></link>
<link rel="preload" as="fetch" href="wtf8.wasm"></link>
<link rel="preload" as="fetch" href="reflect.wasm"></link>
</head><body><h1>Hoot Test</h1></body></html>

For local testing, hoot provides a minimal webserver:

guix shell guile-hoot guile-next -- \
guile -c '((@ (hoot web-server) serve))'

61/64

Linux: Guix tarball. The package is the tarball. — Ludovic

Guix can assemble a tarball of all dependencies. Add a guix.scm:

(import (gnu packages web) (gnu packages base) (gnu packages bash)
(gnu packages guile) (gnu packages guile-xyz)
(gnu packages pkg-config) (guix packages) (guix gexp)
(guix build-system gnu) (guix build-system guile)
(prefix (guix licenses) license:))

(define-public guile-doctests
(package
(name "guile-doctests") (version "0.0.1")
(source (local-file "." "" #:recursive? #t))
(build-system gnu-build-system)
(arguments
(list
#:modules `((guix build guile-build-system)

,@%default-gnu-imported-modules)
#:phases
(with-imported-modules `((guix build guile-build-system)

,@%default-gnu-imported-modules)
#~(modify-phases %standard-phases

(add-after 'install 'wrap
(lambda* (#:key inputs outputs #:allow-other-keys)

(let ((out (assoc-ref outputs "out"))
(effective-version (target-guile-effective-version)))

(wrap-program (string-append out "/bin/doctest")
`("PATH" ":" prefix

,(map (λ (x) (dirname (search-input-file inputs x)))
(list "/bin/guile" "/bin/bash")))

`("GUILE_LOAD_PATH" prefix
(,(string-append out "/share/guile/site/"

effective-version)
,(getenv "GUILE_LOAD_PATH")))

`("GUILE_LOAD_COMPILED_PATH" prefix
(,(string-append out "/lib/guile/"

effective-version "/site-ccache")
,(getenv "GUILE_LOAD_COMPILED_PATH")))))))))))

(propagated-inputs `(("guile" ,guile-3.0)
("pkg-config" ,pkg-config)
("bash" ,bash)
("guile-wisp" ,guile-wisp)
("coreutils" ,coreutils)))

(home-page "https://hg.sr.ht/~arnebab/guile-doctests")
(synopsis "Tests in procedure definitions")
(description "Guile module to keep tests in your procedure definition.")
(license license:lgpl3+)))

guile-doctests

62/64

First test building guix build -f guix.scm, then test running with
guix shell --pure -f guix.scm and once both work, create your
package with:

guix pack -e '(load "guix.scm")' \
-RR -S /bin=bin -S /share=share

Copy the generated tarball. In can be executed with:

mkdir hello && cd hello && tar xf TARBALL_FILE && \
bin/doctest

Since this tarball generation is a bit finicky, there is a guile-doctests
package with a working example setup. Note the wisp2lisp call in
the Makefile.am to prepare the guix.scm file.

Once you have guix pack working, you can also create dockerfiles
and other packages to deploy into different publishing infrastructure.

To be continued: Scheme is in constant development and deploying
Guile programs is getting easier. Lilypond solved Windows.

Also see the Map of R7RS and the Scheme primer to keep learning.

You are ready.

Go and build a project you care about.

63/64

https://hg.sr.ht/~arnebab/guile-doctests
https://misc.lassi.io/2022/map-of-r7rs-small.html
https://spritely.institute/static/papers/scheme-primer.html

List of Links
draketo.de: https://www.draketo.de . 1
Wisp: https://www.draketo.de/software/wisp.html 1
Attribution - Sharealike: https://creativecommons.org/licenses/by-sa/4.0/ . . 5
Real and Rational Numbers: https://www.gnu.org/software/guile/manual/ht

ml_node/Reals-and-Rationals.html . 19
r5rs numbers: https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-h

tml/r5rs_8.html#SEC50 . 19
IEEE 754: https://ieeexplore.ieee.org/document/8766229 19
ice-nine: https://en.wikipedia.org/wiki/Ice-nine?oldid=1204900352 23
Guile Reference Manual: https://www.gnu.org/software/guile/manual/html

_node/SRFI-Support.html . 23
srfi.schemers.org: https://srfi.schemers.org/ 23
recursion wins: http://www.draketo.de/light/english/recursion-wins 33
literal: https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html 37
Revised Report on Scheme: https://standards.scheme.org/ 39
Vector: https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:

__tex2page_sec_6.8 . 39
forestry commission technical paper 1993: https://cdn.forestresearch.gov.uk/

1993/09/fctp004.pdf . 40
Waldwissen: https://www.waldwissen.net/de/lebensraum-wald/baeume-und

-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial 40
BaumUndErde: https://www.baumunderde.de/stammgewicht-rechner/ 40
Exceptions: https://www.gnu.org/software/guile/manual/html_node/Exce

ptions.html . 43
the standard: https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#

TAG:__tex2page_sec_4.2.8 . 47
srfi 64: https://srfi.schemers.org/srfi-64/srfi-64.html 49
Guile Reference Manual: https://www.gnu.org/s/guile/manual/guile.html . . 51
Guile Library: https://www.nongnu.org/guile-lib/doc/ 51
Scheme Requests for Implementation (SRFI): https://srfi.schemers.org/ 51
Scheme standards (RnRS): https://standards.scheme.org/ 51
r7rs-small: https://standards.scheme.org/corrected-r7rs/r7rs.html 51
pdf: https://standards.scheme.org/unofficial/errata-corrected-r7rs.pdf 51
tools and libraries: https://www.gnu.org/software/guile/libraries/ 51
Rosetta Code: https://rosettacode.org/wiki/Category:Scheme 51
texinfo: https://www.gnu.org/software/texinfo/ 51
Emacs: https://gnu.org/software/emacs . 51
Org Mode: https://orgmode.org . 53
Mercurial: https://mercurial-scm.org . 54
Git: https://git-scm.org . 54
Mercurial Guide: https://mercurial-scm.org/guide 54
Git Tutorial: https://git-scm.com/docs/gittutorial 54
webserver: https://www.gnu.org/s/guile/manual/guile.html#Web-Server . . . 59
nginx: https://nginx.org/ . 59
certbot: https://certbot.eff.org/instructions?ws=nginx&os=pip 59
Hoot: https://spritely.institute/hoot/ . 60
guile-doctests: https://hg.sr.ht/~arnebab/guile-doctests 63
Map of R7RS: https://misc.lassi.io/2022/map-of-r7rs-small.html 63
Scheme primer: https://spritely.institute/static/papers/scheme-primer.html . 63
draketo.de/software/programming-basics-wisp: https://www.draketo.de/sof

tware/programming-basics-wisp . 64
Wilko: https://me.literatelisp.eu/ . 64
with GWL: https://www.guixwl.org/manual/gwl.html 64
kb: https://tech.lgbt/@donkeyblam . 64

64/64

https://www.draketo.de
https://www.draketo.de/software/wisp.html
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/software/guile/manual/html_node/Reals-and-Rationals.html
https://www.gnu.org/software/guile/manual/html_node/Reals-and-Rationals.html
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Ice-nine?oldid=1204900352
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://srfi.schemers.org/
http://www.draketo.de/light/english/recursion-wins
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html
https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:__tex2page_sec_6.8
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:__tex2page_sec_6.8
https://cdn.forestresearch.gov.uk/1993/09/fctp004.pdf
https://cdn.forestresearch.gov.uk/1993/09/fctp004.pdf
https://www.waldwissen.net/de/lebensraum-wald/baeume-und-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial
https://www.waldwissen.net/de/lebensraum-wald/baeume-und-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial
https://www.baumunderde.de/stammgewicht-rechner/
https://www.gnu.org/software/guile/manual/html_node/Exceptions.html
https://www.gnu.org/software/guile/manual/html_node/Exceptions.html
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#TAG:__tex2page_sec_4.2.8
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#TAG:__tex2page_sec_4.2.8
https://srfi.schemers.org/srfi-64/srfi-64.html
https://www.gnu.org/s/guile/manual/guile.html
https://www.nongnu.org/guile-lib/doc/
https://srfi.schemers.org/
https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs.html
https://standards.scheme.org/unofficial/errata-corrected-r7rs.pdf
https://www.gnu.org/software/guile/libraries/
https://rosettacode.org/wiki/Category:Scheme
https://www.gnu.org/software/texinfo/
https://gnu.org/software/emacs
https://orgmode.org
https://mercurial-scm.org
https://git-scm.org
https://mercurial-scm.org/guide
https://git-scm.com/docs/gittutorial
https://www.gnu.org/s/guile/manual/guile.html#Web-Server
https://nginx.org/
https://certbot.eff.org/instructions?ws=nginx&os=pip
https://spritely.institute/hoot/
https://hg.sr.ht/~arnebab/guile-doctests
https://misc.lassi.io/2022/map-of-r7rs-small.html
https://spritely.institute/static/papers/scheme-primer.html
https://www.draketo.de/software/programming-basics-wisp
https://www.draketo.de/software/programming-basics-wisp
https://me.literatelisp.eu/
https://www.guixwl.org/manual/gwl.html
https://tech.lgbt/@donkeyblam

Free Digital Version of

Naming and Logic
programming essentials with Wisp

If you enjoy this book,

please buy the print from

draketo.de/software/programming-basics-wisp

Buy free licensed creations,

so I can create more.

https://www.draketo.de/software/programming-basics-wisp

»I tend to use [Wisp] as a Scheme primer for colleagues used
to Python who want to explore realms of functional programming.
It makes Scheme way more “approachable”.«
— Wilko

Get the gist of Lisp in practical steps.

»The more time passes, the more I admire Wisp!«
— Christine Lemmer-Webber from Spritely Institute.

This book guides you into the heart of programming with
Scheme, using the approachable syntax of Wisp to smooth your
journey into one of the oldest standardized and thriving languages.

»Wisp allows people to see code how Lispers perceive it.
Its structure becomes apparent.«
— Ricardo Wurmus about reproducible science with GWL.

We are the namegivers,
the dreamers who build tools of sand and logic
to surpass the limits of our minds.

»I expected Wisp to be more of a fun toy
to play around with and kind of just discard,
but I have actually found it insanely useful
to getting stuff done.«
— kb

Choose your path
through a map of building blocks
to take on challenges by code.

»I love the syntax of Python, but crave
the simplicity and power of Lisp.«
— Arne Babenhauserheide

https://me.literatelisp.eu/
https://www.guixwl.org/manual/gwl.html
https://tech.lgbt/@donkeyblam

	Preface
	The Map of Scheme
	Name a value with define
	Add comments with ;
	Compare numbers
	Use infix in logic
	Use logic with true and false
	Use named values in logic
	Name the result of logic with indentation
	Name logic with define :
	Name a name using define with .
	Return the value of logic with .
	Name inside define : with define
	Name the result of logic in one line with : or ()
	Name text with "
	Take decisions with cond
	Use fine-grained numbers with number-literals
	Use exact numbers with #e and quotients
	Turn exact numbers into decimals with exact->inexact
	Use math with the usual operators as logic
	Return a list of values with list
	Import pre-defined named logic and values with import
	Optimize for performance with ,profile
	Get the result of logic inline with parentheses (), braces {}, or colon :
	Compare structural values with equal?
	Apply logic to a list of values with apply
	Get the arguments of named logic as list with . rest
	Change the value or logic of a defined name with set!
	Apply logic to each value in lists and ignoring the results with for-each
	Get the result of applying logic to each value in lists with map
	Create nameless logic with lambda
	Reuse your logic with let-recursion
	Extend a list with cons
	Mutate partially shared state with list-set!
	Get and resolve names used in code with quote, eval, and module-ref
	Apply partial procedures with srfi :26 cut
	Use r7rs datatypes, e.g. with vector-map
	Name structured values with define-record-type
	Create your own modules with define-module
	Handle errors using with-exception-handler
	Debug with backtraces
	Define derived logic structures with define-syntax-rule
	Build value-lists with quasiquote and unquote
	Merge lists with append or unquote-splicing
	Test your code with srfi 64
	Document procedures with docstrings
	Read the docs
	Create a manual with texinfo
	Track changes with a version tracking system like Mercurial or Git
	Package with autoconf and automake
	Deploy a project to users

