
cba Dr. Arne Babenhauserheide / draketo.de

Naming and Logic
programming essentials with Scheme

and a three-foldand a three-fold
Zen for SchemeZen for Scheme

Find the heart
of programming
with the map of
Scheme.

To follow along,
install Guile and
try the examples
as you read.

“Guile is . . . the
official extension
language of the
GNU project”
gnu.org/s/guile

https://www.draketo.de
https://www.gnu.org/software/guile

Contents

i Preface 5

ii The Map of Scheme 6

1 Name a value with define 8

2 Add comments with ; 8

3 Compare numbers 9

4 Use infix in logic 10

5 Use logic with true and false 11

6 Use named values in logic 12

7 Name the result of logic with parentheses 12

8 Name logic with define (13

9 Name a name with define 14

10 Return the value of logic 14

11 Name in define (with define 15

12 Return a list of values with list 16

13 Name the result of logic in one line with () 17

14 Name text with " 18

15 Take decisions with cond 19

16 Use fine-grained numbers with number-literals 20

2/64

17 Use exact numbers with #e and quotients 20

18 Turn exact numbers into decimals with exact->inexact 21

19 Use math with the usual operators as logic 22

20 Compare structural values with equal? 23

21 Apply logic to a list of values with apply 24

22 Get the arguments of named logic as list with . rest 25

23 Change the value or logic of a defined name with set! 26

24 Apply logic to each value in lists and ignoring the
results with for-each 26

25 Get the result of applying logic to each value in lists
with map 27

26 Reuse your logic with let-recursion 28

27 Import pre-defined named logic and values with import 30

28 Optimize for performance with ,profile 31

29 Create nameless logic with lambda 32

30 Extend a list with cons 33

31 Mutate partially shared state with list-set! 34

32 Apply partial procedures with srfi :26 cut 35

33 Get and resolve names used in code with quote, eval,
and module-ref 36

34 Use r7rs datatypes, e.g. with vector-map 38

3/64

35 Name structured values with define-record-type 39

36 Create your own modules with define-module 40

37 Handle errors using with-exception-handler 41

38 Debug with backtraces 42

39 Test your code with srfi 64 43

40 Define derived logic structures with define-syntax-rule 44

41 Build value-lists with quasiquote and unquote 46

42 Merge lists with append or unquote-splicing 48

43 Document procedures with docstrings 49

44 Read the docs 50

45 Create a manual with texinfo 51

46 Track changes with a version tracking system like
Mercurial or Git 53

47 Package with autoconf and automake 54
47.1 Init a project with hall 58

48 Deploy a project to users 59

4/64

i Preface

Why this book? Providing a concise start, a no-frills, opinionated
intro to programming from first define to deploying an application
on just 64 pages.

Who is it for? You are a newcomer and want to learn by trying
code examples? You know programming and want a running start
into Scheme? You want to see how little suffices with Scheme’s practical
minimalism? Then this book is for you.

What is Scheme? Scheme is a programming language — a Lisp
— that follows the principle “design not by piling feature on top of
feature, but by removing the weaknesses and restrictions that
make additional features appear necessary”.

This book uses Guile Scheme, the official extension language of the
GNU project but is no official product of the FSF or GNU, nor endorsed
by them. GNU is a trademark of the Free Software Foundation. You
can find Guile on gnu.org/s/guile and the FSF on fsf.org.

How to get Guile? Download and install Guile from the website
www.gnu.org/software/guile — then open the REPL by executing
guile in the terminal. The REPL is where you type and try code
interactively. Some name it guile3.0. This text assumes GNU Linux.

Text, Design, and Publishing: Arne Babenhauserheide,
Karlsruher Str. 85,
76676 Graben-Neudorf
arne_bab@web.de

License: Creative Commons: Attribution - Sharealike.
Code examples also under any Free Software license.

Production: epubli – ein Service der neopubli GmbH,
Köpenicker Straße 154a, 10997 Berlin

Contact according to EU product safety regulation:
produktsicherheit@epubli.com

5/64

https://creativecommons.org/licenses/by-sa/4.0/

ii The Map of Scheme

6/64

7/64

1 Name a value with define

Use (define ...) to name a value. Return the last name.

(define small-tree-height-meters 3)
(define large-tree-height-meters 5)
small-tree-height-meters

After typing this into the Guile REPL, hit enter. You should see

$1 = 3

This means: the first returned value ($1) is 3. The next time you
return a value, it will be called $2.

Names can contain any letter except for (white-)space, quote, comma
or parentheses. They must not be numbers.

(define illegal name 1)
(define 'illegal-name 2)
(define ,illegal-name 3)
(define illegal)name 4)
(define 1113841 5)

2 Add comments with ;

(define birch-height/m 3)
;; this is a comment
(define height ; comment at the end

;; comment between lines
5)

It is common to use ;; instead of ;, but not required.

A comment goes from the first ; to the end of the line.

8/64

3 Compare numbers

(= 3 3)

#t

(= 3 5)

#f

#t means true, #f means false. Parentheses return the result of logic.
The logic comes first. This is clear for =, but easy to misread for <.

(< 3 5) ;; is 3 smaller than 5? #true

#t

(> 5 3) ;; is 5 bigger than 3? #true

#t

(> 3 3) ;; is 3 bigger than 3? #false

#f

(>= 3 3) ;; is 3 bigger than or equal to 3? #true

#t

(<= 3 3) ;; is 3 smaller than or equal to 3? #true

#t

9/64

4 Use infix in logic

Prefix comparisons can be hard to grasp when used to math. Guile
provides the keyword #!curly-infix to enable infix math between
curly braces: {...}.

#!curly-infix
{3 < 5}

#t

Infix logic directly gives a value. To use it, you must put #!curly-infix
somewhere in your code before you use the first curly braces ({...}).

You can only use curly braces for infix operations.

Because infix-logic gives a value, you can use it in place of a value, for
example to nest it:

#!curly-infix
{{5 < 3} equal? #f}

#t

Or to name its value:

#!curly-infix
(define is-math-sane? {3 < 5})
is-math-sane?

#t

By convention, names with the value true or false have the suffix ?.

10/64

5 Use logic with true and false

(and #t #t)

#t

(and #f #t)

#f

(or #f #t)

#t

(or #f #f)

#f

If any value passed to and is #f (#false), it ignores further values.
If any value passed to or is not #f (not #false), it ignores further
values.

#!curly-infix
(and #t #t #t) ;; => #true
(and #t #f #t) ;; => #false
(and {3 < 5} {5 < 3}) ;; => #false
(or #t #f #t) ;; => true
(or {3 < 5} {5 < 3}) ;; => #true
(or #f #f #f) ;; => #false

For and and or, everything is #true (#t) except for #false (#f). Given
the number of hard to trace errors in other languages that turn up in
production, this is the only sane policy.

11/64

6 Use named values in logic

#!curly-infix
(define small-tree-height/m 3)
(define large-tree-height/m 5)
{small-tree-height/m < large-tree-height/m}

#t

7 Name the result of logic with parentheses

#!curly-infix
(define birch-h/m 3)
(define chestnut-h/m 5)
(define same-héight?

(= birch-h/m chestnut-h/m))
(define smaller?

{birch-h/m < chestnut-h/m}) ;; infix
smaller?

#t

The infix directly returns its value. Here this value is then named
smaller?.

12/64

8 Name logic with define (

(define (same-height? tree-height-a tree-height-b)
(= tree-height-a tree-height-b))

(same-height? 3 3)

#t

The first word is the name of the logic. The others are the arguments
the logic operates on.

By convention, logic that returns true or false has the suffix ?.

You can now use your named logic like all other logic. Even with infix.

#!curly-infix
(define (same-height? tree-height-a tree-height-b)

(= tree-height-a tree-height-b))
{3 same-height? 3}

#t

What this map of Scheme calls named logic is commonly called
function or procedure. We’ll stick with logic for the sake of a
leaner conceptual mapping.

The indented lines with the logic named here are called the body. The
body of named logic can have multiple lines. Only the value of the
last is returned.

(define (unused-comp value)
(= 2 value) ;; not returned
(= 3 value)) ;; returned

13/64

9 Name a name with define

(define small-tree-height-meters 3)
(define height

small-tree-height-meters)
height

3

After you name a name, the new name holds the same value as the
original name.

10 Return the value of logic

#!curly-infix
(define (larger-than-4? size)

{size > 4})
larger-than-4?

#<procedure larger-than-4? (size)>

The value of logic defined with define (is a procedure — often called
proc for brevity. You can see the arguments in the output: If you call
it with too few or too many arguments, you get errors.

There are other kinds of logic: syntax rules and reader-macros. We will
cover syntax rules later. New reader macros are rarely needed; using
{...} for infix math is a reader macro activated with #!curly-infix.

14/64

11 Name in define (with define

#!curly-infix
(define birch-h/m 3)
(define (birch-is-small)

(define reference-h/m 4)
{birch-h/m < reference-h/m})

(birch-is-small)

#t

Only the last part of the body of define (is returned.

A calculation inside parentheses or curly braces is executed in-place,
so when it is the last element, its result value is returned.

Zen for SchemeZen for Scheme

A Zen for Scheme part 1: Birds Eye

RR Remove limitations to Reduce the feature-count you need,
but OM: Optimizability Matters.

FI Freedom for Implementations and from Implementations,
but CM: Community Matters: Join the one you choose.

SL Mind the Small systems!
And the Large systems!

ES Errors should never pass silently,
unless speed is set higher than safety.

Thanks for the error-handling principle goes to John Cowan.

15/64

12 Return a list of values with list

(define known-heights
(list 3 3.75 5 100))

(list (list 3 5)
known-heights)

((3 5) (3 3.75 5 100))

You can put values on their own lines. Different from define (, list
keeps all values, not just the last.

(define known-heights-2
(list 3

3.75 5
100)) ;; list keeps all numbers

(define known-heights-3
(list

3
3.75
5
100))

(define (last-height)
3 3.75 5 100) ;; (define (...) ...) only returns the

last↪→

(= 100 (last-height))

#t

16/64

13 Name the result of logic in one line with ()

(define birch-h/m 3)
(define chestnut-h/m 5)

(define same-height? (= birch-h/m chestnut-h/m))
same-height?

#f

This is consistent with infix-math and uniform with defining logic:

#!curly-infix
(define birch-h/m 3)
(define chestnut-h/m 5)

(define same-height? {birch-h/m = chestnut-h/m})

(define (same? tree-height-a tree-height-b)
(= tree-height-a tree-height-b))

(define same2? (same? birch-h/m chestnut-h/m))
(list same-height? same2?)

'(#f #f)

17/64

14 Name text with "

(define tree-description "large tree")
(define footer "In Love,

Arne")
(define greeting

"Hello")
(display footer)

In Love,

Arne

Like { }, text (called string as in “string of characters”) is its value.

Text can span multiple lines. Linebreaks in text do not affect the
meaning of code.

You can use \n to add a line break within text without having a visual
line break. The backslash (\) is the escape character and \n represents
a line break. To type a real \ within quotes ("), you must escape it
as \\.

With display you can show text as it will look in an editor.

Text is stronger than comments, unless it is inside a comment:

(define with-comment ;; belongs to coment
;; comment "quotes inside comment"
"Hello ;; part of the text. Backslash: \\")

with-comment

Hello ;; part of the text. Backslash: \

18/64

15 Take decisions with cond

#!curly-infix
(define chestnut-h/m 5)
(define tree-description

(cond
({chestnut-h/m > 4}

"large tree")
((= 4 chestnut-h/m)

"four meter tree")
(else

"small tree")))
tree-description

large tree

cond checks its clauses one by one and uses the first with value #true.
To cond, every valid value is #true (#t) except for #false (#f).
To use named logic, enclose it in parentheses to check its value.

In cond, else is #true, too.

#!curly-infix
(list
(cond
(5 #t)
(else ;; else is #true in cond
#f))

(cond (#f #f)
(else #t))

(cond
({3 < 5} #t)
(else #f)))

'(#t #t #t)

19/64

16 Use fine-grained numbers with
number-literals

(define more-precise-height 5.32517)
(define 100-meters 1e2)
(list more-precise-height

100-meters)

(5.32517 100.0)

These are floating point numbers. They store approximate values in
64 bit binary, depending on the platform. Read all the details in the
Guile Reference manual Real and Rational Numbers, the r5rs numbers,
and IEEE 754.1

17 Use exact numbers with #e and quotients

(define exactly-1/5 #e0.2)
(define exactly-1/5-too 1/5)
(list exactly-1/5

exactly-1/5-too)

(1/5 1/5)

Guile computations with exact numbers stay reasonably fast even for
unreasonably large or small numbers.

1All links are listed on page 64.

20/64

https://www.gnu.org/software/guile/manual/html_node/Reals-and-Rationals.html
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://ieeexplore.ieee.org/document/8766229

18 Turn exact numbers into decimals with
exact->inexact

(list (exact->inexact #e0.2)
(exact->inexact 1/5)
(exact->inexact 2e7))

(0.2 0.2 2.0e7)

The inverse is inexact->exact:

(inexact->exact 0.5)

1/2

Note that a regular 0.2 need not be exactly 1/5, because floating point
numbers do not have exact representation for that. You’ll need #e to
have precise 0.2.

(list (inexact->exact 0.2)
#e0.2)

(3602879701896397/18014398509481984 1/5)

By convention, procs that convert data type a into data type b are
named a->b.

21/64

19 Use math with the usual operators as logic

(define one-hundred
(* 10 10))

(define half-hundred (/ one-hundred 2))
half-hundred

50

Remember that names cannot be valid numbers!

(define 100 ;; error!
(* 10 10))

ice-9/boot-9.scm:1685:16: In procedure raise-exception:
Syntax error:
unknown location: source expression failed to match any

pattern in form (define 100 (* 10 10))↪→

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

scheme@(guile-user) [1]>

Using infix via curly braces {} is useful for math:

#!curly-infix
(define one-hundred {10 * 10})
(define half-hundred {one-hundred / 2})
half-hundred

50

22/64

20 Compare structural values with equal?

(define known-heights
(list 3 3.75 5 100))

(define known-heights-2
(list 3

3.75 5
100))

(define known-heights-3
(list 3 3.75

5 100))
(equal? known-heights known-heights-2 known-heights-3)

#t

equal? compares whether all values it receives are equal. For struc-
tural values like lists, being equal means that all contained elements
have equal value and are in the same order.

Like = and +, equal? can be used on arbitrary numbers of values.

Zen for SchemeZen for Scheme

A Zen for Scheme part 2: On the Ground

HA Hygiene reduces Anxiety,
except where it blocks your path.

PP Practicality beats Purity,
except where it leads into a dead end.

3P 3 Pillars of improvement:
Experimentation, Implementation, Standardization.

23/64

21 Apply logic to a list of values with apply

(apply = (list 3 3))

#t

(equal?
(= 3 3)
(apply = (list 3 3)))

#t

Only the last argument of apply is treated as list, so you can give
initial arguments:

(define a 1)
(define b 1)
(apply = a b

(list 1 1)) ;; becomes (= a b 1 1)

#t

(define zero-to-nine (iota 10)) ;; numbers from 0 to 9
(apply + zero-to-nine) ;; sums the numbers

45

Using apply proc a (list b c) gives the same result as calling proc
with the arguments a b c. In the examples, proc is = or +.

24/64

22 Get the arguments of named logic as list
with . rest

(define (same? heights) ;; accepts a list
(apply = heights))

(define (same2? . heights) ;; accepts multiple arguments
(apply = heights))

(list (same? (list 1 1 1))
(same2? 1 1 1))

'(#t #t)

These are often called rest. Getting them is not for efficiency but to
improve programming interfaces (APIs). The list creation happens
implicitly. You can mix regular arguments and rest arguments:

(define (same? alice bob . rest)
(display (list alice bob rest))
(newline)
(apply = alice bob rest))

(display (same? 1 1 1 1)) ;; 4 arguments, the last 2 are
rest↪→

(1 1 (1 1))
#t

Remember that apply uses only the last of its arguments as list, in
symmetry with . rest.

25/64

23 Change the value or logic of a defined name
with set!

(define birch-h/m 3)
(set! birch-h/m 3.74) ;; set to a value
(display birch-h/m)(newline) ;; (newline) is linebreak
(set! birch-h/m =) ;; set to logic
(display birch-h/m)(newline)

3.74
#<procedure = (#:optional _ _ . _)>

It is customary to suffix named logic that changes values of existing
names with !.

Since logic can cause changes to names and not just return a result, it
is not called function, but procedure; proc for brevity.

24 Apply logic to each value in lists and
ignoring the results with for-each

#!curly-infix
(define birch-h/m 3)
(define has-birch-height #f)
(define (set-true-if-birch-height! height/m)

(cond
({birch-h/m = height/m}

(set! has-birch-height #t))))
(define heights (list 3 3.75 5 100))
(for-each set-true-if-birch-height! heights)
has-birch-height

#t

26/64

25 Get the result of applying logic to each
value in lists with map

(define birch-h/m 3)
(define (same-height-as-birch? height/m)

(= birch-h/m height/m))
(define heights (list 3 3.75 5 100))
(list heights

(map same-height-as-birch?
heights)

(map + ;; becomes 1+3 2+2 3+1
(list 1 2 3)
(list 3 2 1))

(map list
(list 1 2 3)
(list 3 2 1)))

'((3 3.75 5 100) (#t #f #f #f) (4 4 4) ((1 3) (2 2) (3 1)))

When operating on multiple lists, map takes one argument from each
list. All lists must be the same length.

To remember : apply extracts the values from its last argument, map
extracts one value from each argument after the first.

apply map list ... flips rows and colums:

(apply map list
(list (list 1 2 3)

(list 3 2 1)))

((1 3) (2 2) (3 1))

27/64

26 Reuse your logic with let-recursion

Remember the for-each example:

#!curly-infix
(define has-birch-height #f)
(define heights (list 3 3.75 5 100))
(define (set-true-if-birch-height! height/m)

(define birch-h/m 3)
(cond

({birch-h/m = height/m}
(set! has-birch-height #t))))

(for-each set-true-if-birch-height! heights)
has-birch-height

#t

Instead of for-each, we can build our own iteration:

(define heights (list 3 3.75 5 100))
(define (has-birch-height? heights)

(define birch-h/m 3)
(let loop ((heights heights)) ;; start with heights

(cond
((null? heights) #f) ;; if heights is empty: #false
((= birch-h/m (car heights)) ;; car gets the first

#t)
(else

;; continue with all but the first
(loop (cdr heights))))))

(has-birch-height? heights)

#t

null? asks whether the list is empty. car gets the first element of a
list, cdr gets the list without its first element.

28/64

Recursion is usually easier to debug (all variable elements are available
at the top of the let recursion) and often creates cleaner APIs than
iteration, because fewer names are visible from outside.

As rule of thumb: start with the recursion end condition (here: (null?
heights)) and ensure that each branch of the cond either ends recur-
sion by returning something (here #f or #t) or moves a step towards
finishing (usually with cdr, +, -, 1+, or 1-).

Another example why recursion wins:

(define (fib n)
(let rek ((i 0) (u 1) (v 1))

(if (>= i (- n 2))
v
(rek (+ i 1) v (+ u v)))))

Zen for SchemeZen for Scheme

A Zen for Scheme part 3: Submerged in Code

WM Use the Weakest Method that gets the job done,
but know the stronger methods to employ them as needed.

RW Recursion Wins,
except where a loop-macro is clearer.

RM Readability matters,
and nesting works.

29/64

http://www.draketo.de/light/english/recursion-wins

27 Import pre-defined named logic and values
with import

(import (ice-9 pretty-print)
(srfi :1 lists)) ;; list operations like (first)

(pretty-print
(list 12

(list 34)
5 6))

(pretty-print (list
(first (list 1 2 3)) ;; 1
(second (list 1 2 3)) ;; 2
(third (list 1 2 3)) ;; 3

(member 2 (list 1 2 3)))) ;; list 2 3 => #true

(12 (34) 5 6)
(1 2 3 (2 3))

Import uses modules which can have multiple components. In the first
import, ice-9 is one component and the second is pretty-print. In
the second, srfi is the first component, :1 is the second, and lists
is the third.

ice-9 is the name for the core extensions of Guile. It’s a play of words
on ice-nine, a fictional perfect seed crystal.

SRFI’s are Scheme Requests For Implementation, portable libraries
built in collaboration between different Scheme implementations. The
ones available in Guile can be found in the Guile Reference manual.
More can be found on srfi.schemers.org. They are imported by number
(:1) and can have a third component with a name, but that’s not
required.

30/64

https://en.wikipedia.org/wiki/Ice-nine?oldid=1204900352
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://srfi.schemers.org/

You can use only to import only specific names.

(import (only (srfi :1) first second)) ;; no third

(first (list 1 2 3)) ;; 1
(second (list 1 2 3)) ;; 2
(third (list 1 2 3)) ;; error: third not imported

ice-9/boot-9.scm:1685:16: In procedure raise-exception:
Unbound variable: third

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

scheme@(guile-user) [1]>

28 Optimize for performance with ,profile

When in the interactive REPL, you can get a runtime profile; for fast
operations you may need to run them in a loop to get a robust sample:

(define runs (iota 1000000)) ;; numbers from 0 to 999999
,profile (for-each number->string runs)

% cumulative self
time seconds seconds procedure
100.00 0.06 0.06 number->string

0.00 0.06 0.00 ice-9/boot-9.scm:260:2:for-each

Sample count: 3
Total time: 0.057737025 seconds (0.0 seconds in GC)

To look deeper, use ,disassemble.
In code files import statprof.

31/64

29 Create nameless logic with lambda

(define (is-same-height? a b)
(> a b)) ;; <- this is a mistake: differs from the name

(display is-same-height?)
(newline) ; (newline) prints a linebreak
(display (is-same-height? 3 3))(newline) ;; wrong result
(define (fixed a b)

(= a b))
(set! is-same-height? fixed)
(display is-same-height?)(newline) ;; now called "fixed"
(display (is-same-height? 3 3))(newline)
;; shorter and avoiding name pollution and confusion.
(set! is-same-height?

(lambda (a b) ;; no name, only arguments
(= a b)))

;; since lambda has no name, we see the original name
(display is-same-height?)(newline)
(display (is-same-height? 3 3))

#<procedure is-same-height? (a b)>
#f
#<procedure fixed (a b)>
#t
#<procedure is-same-height? (a b)>
#t

The return value of lambda is logic (a procedure).

If logic is defined via define (, it knows the name it has been defined
as. With lambda, it does not know the name.

lambda is a special form. Think of it as
(define (name arguments ...) ...), but without the name.

32/64

30 Extend a list with cons

The core of composing elementwise operations.

To build your own map function which returns a list of results, you
need to add to a list.

(cons 1 (list 2 3))
;; => list 1 2 3

1 2 3

Used for a simplified map implementation that takes a single list:

(define (single-map proc elements)
(let loop ((changed (list)) (elements elements))

(cond
((null? elements) ;; empty list => done
(reverse changed)) ;; recover order

(else
(loop

;; add processed first element to changed
(cons (proc (car elements)) ; car gets first

changed)
;; drop first element from elements
(cdr elements))))))

(single-map even? (list 1 2 3))
;; => #f #t #f

'(#f #t #f)

Repeatedly cons’ing the first element of a list onto a second list and
dropping it from the first reverses the element order. It’s a core
operation, because it’s the most efficient operation for singly linked
lists.

33/64

31 Mutate partially shared state with list-set!

The elements in a list are linked from its start. Different lists can share
the same tail when you cons onto the same partial list.

(import (srfi :1) (ice-9 pretty-print))
(define tail ;; the shared tail

(list 3 2 1)) ;; 3 2 1
(define four ;; an intermediate list

(cons 4 tail)) ;; 4 3 2 1
(define five ;; one more list

(cons 5 four)) ;; 5 4 3 2 1
(define fourtytwo ;; branching off from tail

(cons 42 tail)) ;; 42 3 2 1
(list-set! five 1 "four") ;; change shared state
(pretty-print five) ;; changed directly: 5 four 3 2 1
(pretty-print four) ;; touched indirectly ;; four 3 2 1
(pretty-print fourtytwo) ;; not affected ;; 42 3 2 1
(list-set! tail 1 "two") ;; mutating the shared tail
(pretty-print five) ;; 5 four 3 two 1
(pretty-print four) ;; four 3 two 1
(pretty-print fourtytwo) ;; 42 3 two 1
(pretty-print tail) ;; 3 two 1

(5 "four" 3 2 1)
("four" 3 2 1)
(42 3 2 1)
(5 "four" 3 "two" 1)
("four" 3 "two" 1)
(42 3 "two" 1)
(3 "two" 1)

Mutating shared state often causes mistakes. Use it only when needed.

34/64

32 Apply partial procedures with srfi :26 cut

(import (srfi :26 cut))

(define (plus-3 number)
(+ 3 number))

(define plus-3-cut (cut + 3 <>))

(list
(map plus-3

(list 1 2 3)) ;; list 4 5 6

(map plus-3-cut
(list 1 2 3)) ;; list 4 5 6

(map (cut + 3 <>)
(list 1 2 3)) ;; list 4 5 6

(map (cut - <> 1) ;; => {<> - 1}
(list 1 2 3)) ;; list 0 1 2

(map (cut - 1 <>) ;; => {1 - <>}
(list 1 2 3))) ;; list 0 -1 -2

((4 5 6) (4 5 6) (4 5 6) (0 1 2) (0 -1 -2))

cut enables more concise definition of derived logic. These specialized
definitions also help to simplify and=>:

(list (and=> #f (cut + <> 3) ;; #f
(and=> 5 (cut + <> 3)) ;; 8

This method is known in mathematics as “currying“.

35/64

33 Get and resolve names used in code with
quote, eval, and module-ref

(list (quote alice)
'bob ;; shorthand for (quote bob)
'carol
(quote dave))

;; => (alice bob carol dave)

(define alice "the first")

(eval 'alice (current-module))
;; => "the first"
(module-ref (current-module) 'alice)
;; => "the first"
;; module-ref is less powerful than eval. And safer.

(define code
(quote

(list 1 2 3)))
code
;; => (list 1 2 3)
;; uses parentheses form
(eval code (current-module))
;; => (1 2 3)

'(1 2 3)
;; (1 2 3)
(list 1 2 3)
;; (1 2 3)

(equal? '(1 2 3)
(list 1 2 3)) ;; #true

36/64

The form ’(1 2 3) is a shorthand to create an immutable (literal)
list that is equal? to list 1 2 3.

But some operations like (list-set! the-list index new-value)
from srfi :1 do not work on immutable lists.

(define mutable-list (list 1 2 3))
(display mutable-list)
(newline)
(list-set! mutable-list 1 'a) ;; zero-indexed
(display mutable-list)

(1 2 3)
(1 a 3)

(define immutable-list '(1 2 3))
(display immutable-list)
(list-set! immutable-list 1 'a) ;; error!

ice-9/boot-9.scm:1685:16: In procedure raise-exception:
In procedure set-car!: Wrong type argument in position 1

(expecting mutable pair): (2 3)↪→

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

scheme@(guile-user) [1]>

37/64

https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html

34 Use r7rs datatypes, e.g. with vector-map

R7RS is the 7th Revised Report on Scheme. Guile provides a super-
set of the standard: its core can be imported as scheme base. A
foundational datatype is Vectors with O(1) random access guarantee.

(import (scheme base))
(define vec (list->vector (list 1 b "third")))
(vector-ref vec 0) ;; zero-indexed

To map over vectors, use vector-map:

(import (scheme base))
(define vec (list->vector (list 1 b "third")))
(vector-map (λ (element) (cons 'el element))

vec)

Vectors have the literal form #(a b c). It is an error to mutate these.

(import (scheme base))

(define mutable-vector (list->vector (list 1 b "third")))
(define literal-vector #(1 b "third"))

(vector-set! mutable-vector 1 "bee") ;; allowed
; (vector-set! literal-vector 1 "bee") ;; forbidden
(list mutable-vector literal-vector)

38/64

https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:__tex2page_sec_6.8

35 Name structured values with
define-record-type

(import (srfi :9 records))

(define-record-type <tree>
(make-tree type height-m weight-kg carbon-kg)
tree?
(type tree-type)
(height-m tree-height)
(weight-kg tree-weight)
(carbon-kg tree-carbon))

(define birch-young
(make-tree "birch" 13 90 45)) ;; 10 year, 10cm diameter,

(define birch-old
(make-tree "birch" 30 5301 2650)) ;; 50 year, 50cm

(define birch-weights
(map tree-weight (list birch-young birch-old)))

(list birch-young
birch-old
birch-weights)

'(#<<tree> type: "birch" height-m: 13 weight-kg: 90
carbon-kg: 45> #<<tree> type: "birch" height-m: 30
weight-kg: 5301 carbon-kg: 2650> (90 5301))

↪→

↪→

Carbon content in birch trees is about 46% to 50.6% of the mass. See
forestry commission technical paper 1993.

Height from Waldwissen, weight from BaumUndErde.

39/64

https://cdn.forestresearch.gov.uk/1993/09/fctp004.pdf
https://www.waldwissen.net/de/lebensraum-wald/baeume-und-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial
https://www.baumunderde.de/stammgewicht-rechner/

36 Create your own modules with define-module

To provide your own module, create a file named by the module name.
For (import (example trees)) the file must be example/trees.scm.
Use define-module and #:export what others can import:

(define-module (example-scm trees)
#:export
(birch-young
make-tree tree? tree-carbon))

(import (srfi :9 records)) ;; imports after define-module
(define-record-type <tree> ;; reduced record type

(make-tree carbon-kg)
tree?
(carbon-kg tree-carbon))

(define birch-young
(make-tree 45)) ;; 10 year, 10cm diameter,

To use that module, add your root folder to the search path. Then just
import it. To ensure that the file is run that way, use shell-indirection:

#!/usr/bin/env bash
exec -a "${0}" guile -L "$(dirname "${0}")" "${0}" $@
;; Guile execution !#
(import (example-scm trees))
birch-young

$1 = #<<tree> carbon-kg: 45>

Made executable with chmod +x the-file.scm, run with ./the-file.scm

40/64

37 Handle errors using with-exception-handler

;; unhandled exception stops execution
(define (add-5 input)

(display (+ 5 input))) ;; illegal for text
;; (map add-5 '("five" 6 "seven")) ;; Wrong type argument
;; check inputs
(define (add-5-if input)

(if (number? input)
(display (+ 5 input))
#f))

(map add-5-if '("five" 6 "seven"))

11

;; handle exceptions
(define (add-5-handler input)

(with-exception-handler
(λ (e) (format #t "must be number, is ~S.\n" input)

#f) ;; this is the handler
(λ () (display (+ 5 input))(newline)) ;; the code
#:unwind? #t)) ;; #t: continue #f: stop

(map add-5-handler '("five" 6 "seven"))

must be number, is "five".
11
must be number, is "seven".

In Guile Scheme checking inputs is often cheaper than exception han-
dling, but exception handling needs less information about implemen-
tation details.

Format replaces patterns (here: ~S) in text with values (here input).

41/64

38 Debug with backtraces

To find the cause of an exception, you can use backtraces. When you
see an error interactively, you can get a backtrace with ,bt:

(define (add-5 input)
(display (+ 5 input))) ;; illegal for text

(add-5 "six")

ice-9/boot-9.scm:1685:16: In procedure raise-exception:
In procedure +: Wrong type argument in position 1: "six"

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

scheme@(guile-user) [1]>

,bt

In current input:
2:11 1 (add-5 "six")

In ice-9/boot-9.scm:
1683:22 0 (raise-exception _ #:continuable? _)

The error comes from the first item (add-5 "six"), and it is thrown
in the file ice-9/boot-9.scm via raise-exception. When the error
comes from a file, you also get a file name and line number for the first
item. Most backtraces are longer.

The number in square brackets after the interactive error ([1]) is your
depth in the debugger. You can get one level back with ,q or CTRL-D
(when outside the debugger, this exits from Guile).

To throw debuggable errors yourself, use raise-exception. Also see
the chapter Exceptions in the Guile Reference Manual.

42/64

https://www.gnu.org/software/guile/manual/html_node/Exceptions.html

39 Test your code with srfi 64

Is your code correct?

(import (srfi :64 testsuite))

(define (tree-carbon weight-kg)
(* 0.5 weight-kg))

(define (run-tests)
(test-begin "tree-carbon")
(test-equal 45.0

(tree-carbon 90))
(test-approximate 45.0

(+ 40 (random 10.0))
5) ;; expected error size

(test-assert (equal? 45.0 (tree-carbon 90)))
(test-error (throw 'wrong-value))
(test-end "tree-carbon"))

(run-tests)

%%%% Starting test tree-carbon (Writing full log to
"tree-carbon.log")↪→

of expected passes 4

You can use this anywhere.

For details, see srfi 64.

43/64

https://srfi.schemers.org/srfi-64/srfi-64.html

40 Define derived logic structures with
define-syntax-rule

In procedures, arguments are evaluated to their return value before
the body runs. Procedures evaluate from inside to outside:

(import (ice-9 pretty-print))

(define (hello-printer . args)
(pretty-print "Hello")
(for-each pretty-print args))

;; v evaluated first
(hello-printer 1 (pretty-print "second")

3 4)
;; prints "second" "Hello" 1 3 4

"second"
"Hello"
1
#<unspecified>
3
4

The result of pretty-print is #<unspecified>

(pretty-print "second") is evaluated before being passed to hello-
printer, so its result is shown first.

But for example cond only evaluates the required branches. It is not
a procedure, but a syntax-rule.

Syntax-rules evaluate from outside to inside:

44/64

(import (ice-9 pretty-print))

(define-syntax-rule (early-printer args ...)
(begin

(pretty-print "Hello") ;; <- evaluated first
(for-each pretty-print (list args ...))))

(early-printer 1 (pretty-print "second")
3 4)

;; prints "Hello" "second" 1 3 4

"Hello"
"second"
1
#<unspecified>
3
4

Arguments of define-syntax-rule are only evaluated when they
are passed into a regular procedure or returned. By calling other
syntax-rules in syntax-rules, evaluation can be delayed further.

define-syntax-rule can reorder arguments and pass them to other
syntax-rules and to procedures. It cannot ask for argument values,
because it does not evaluate names as values. It operates on names
and structure.

Instead of (define (name . args) args), it uses a pattern:

(define-syntax-rule (name args ...) args ...)

The ellipsis ... marks args as standing for zero or more names. It
must be used with the ellipsis as args

The body of define-syntax-rule must have only one element. The
logic begin wraps its own body to count as only one element. It returns
the value of the last element in its body.

45/64

41 Build value-lists with quasiquote and unquote

(define (tree-manual type height weight carbon-content)
"Create a tree with list and cons."
(list (cons 'type type)

(cons 'height height)
(cons 'weight weight)
(cons 'carbon-content carbon-content)))

(tree-manual "birch" 13 90 45)

(define (tree-quasiquote type height weight
carbon-content)

"Create a tree with raw quasiquote and unquote."
(quasiquote

((type . (unquote type))
(height . (unquote height))
(weight . (unquote weight))
(carbon-content . (unquote carbon-content)))))

(tree-quasiquote "birch" 13 90 45)

(define (tree-shorthand type height weight carbon-content)
"Create a tree with quasiquote/unquote shorthands."
`((type . ,type) ;; ` is short for (quasiquote)

(height . ,height) ;; , is short for (unquote)
(weight . ,weight)
(carbon-content . ,carbon-content)))

(display (tree-shorthand "birch" 13 90 45))

((type . birch) (height . 13) (weight . 90)
(carbon-content . 45))↪→

These three methods are almost equivalent, except that quasiquoting
can create an immutable list, but does not have to.

46/64

(define three 3)
(define mutable-list (list 1 2 3))
(list-set! mutable-list 1 'a) ;; zero-indexed
mutable-list

(1 a 3)

(define immutable-list `(1 2 3))
(list-set! immutable-list 1 'a) ;; error!
immutable-list

ice-9/boot-9.scm:1685:16: In procedure raise-exception:
In procedure set-car!: Wrong type argument in position 1

(expecting mutable pair): (2 3)↪→

Entering a new prompt. Type `,bt' for a backtrace or
`,q' to continue.↪→

scheme@(guile-user) [1]>

(define three 3)
(define mutable-quasiquoted `(1 2 ,three))
(list-set! mutable-quasiquoted 1 'a) ;; no error yet!
mutable-quasiquoted

(1 a 3)

Mutating quasiquoted lists may always throw an error in the future:

A quasiquote expression may return either newly allocated,
mutable objects or literal structure for any structure that
is constructed at run time . . . - the standard (r7rs)

47/64

https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#TAG:__tex2page_sec_4.2.8

42 Merge lists with append or unquote-splicing

(import (ice-9 pretty-print))

(define birch-carbon/kg '(5000 5301 5500))
(define oak-carbon/kg '(7000 7700 8000))

;; append merges lists
(pretty-print

(append birch-carbon/kg
oak-carbon/kg))

;; unquote-splicing splices a list into quasiquote (`)
(pretty-print

`((unquote-splicing birch-carbon/kg)
(unquote-splicing oak-carbon/kg)))

;; with shorthand ,@
(pretty-print

`(,@birch-carbon/kg
,@oak-carbon/kg))

(5000 5301 5500 7000 7700 8000)
(5000 5301 5500 7000 7700 8000)
(5000 5301 5500 7000 7700 8000)

Unquote splicing can also insert the result of logic:

`(,@(map 1- '(1 2 3))
(unquote-splicing (map 1+ (reverse '(1 2))))
,@(list 1 0))

(0 1 2 3 2 1 0)

48/64

43 Document procedures with docstrings

(define (documented-proc arg)
"Procedure is documented"
#f) ;; doc must not be the last element

(display (procedure-documentation documented-proc))
(newline)

;; variables have no docstrings but the documentation
;; property can be set manually.
(define variable #f)
(set-object-property! variable 'documentation

"Variable is documented")
(display (object-property variable 'documentation))

Procedure is documented
Variable is documented

You can get the documentation with help or ,d on the REPL:

,d documented-proc => Proc is documented
,d variable => Variable is documented

For generating documentation from comments, there’s guild doc-snarf.

;; Procedure documentation can be snarfed
(define (snarfed-proc arg)

#f)
;; Variable documentation can be snarfed
(define snarfed-variable #f)

If this is saved as hello.scm, get the docs via

guild doc-snarf --texinfo hello.scm

49/64

44 Read the docs

Now you understand the heart of code. With this as the core there is
one more step, the lifeblood of programming: learning more. Sources:

• Guile Reference manual

• Guile Library

• Scheme Requests for Implementation (SRFI): tagged libraries

• Scheme standards (RnRS), specifically r7rs-small (pdf)

• A list of tools and libraries

• Rosetta Code with solutions to many algorithm problems

Info manuals can often be read online, but the info commandline
application and info in Emacs (C-h i) are far more efficient and
provide full-text search. You can use them to read the Guile reference
manual and some libraries. Get one by installing texinfo or Emacs.

In interactive guile (the REPL), you can check documentation:

(help string-append)

`string-append' is a procedure in the (guile) module.

- Scheme Procedure: string-append . args
Return a newly allocated string whose characters form the
concatenation of the given strings, ARGS.

,help

Help Commands [abbrev]:
...

Note: the full links are printed in the list of links on page 64.

50/64

https://www.gnu.org/s/guile/manual/guile.html
https://www.nongnu.org/guile-lib/doc/
https://srfi.schemers.org/
https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs.html
https://standards.scheme.org/unofficial/errata-corrected-r7rs.pdf
https://www.gnu.org/software/guile/libraries/
https://rosettacode.org/wiki/Category:Scheme
https://www.gnu.org/software/texinfo/
https://gnu.org/software/emacs

45 Create a manual with texinfo

Create a doc/ folder and add a hello.texi file.

An example file can look like the following:

\input texinfo
@documentencoding UTF-8
@settitle Hello World
@c This is a comment; The Top node is the first page
@node Top

@c Show the title and clickable Chapter-names as menu
@top
@menu
* First Steps::
* API Reference::
@end menu

@contents
@node First Steps
@chapter First Steps
@itemize
@item
Download from ...
@item
Install: @code{make}.
@end itemize

Example:
@lisp
(+ 1 2)
@result{} 3
@end lisp

51/64

@node API Reference
@chapter API Reference
@section Procedures
@subsection hello
Print Hello
@example
hello
@end example
@bye

Add a Makefile in the doc/ folder:

all: hello.info hello.epub hello_html/index.html
hello.info: hello.texi

makeinfo hello.texi
hello.epub: hello.texi

makeinfo --epub hello.texi
hello_html/index.html: hello.texi

makeinfo --html hello.texi

Run make in the doc/ folder:

make

Read the docs with calibre or the browser or plain info:

calibre hello.epub & \
firefox hello_html/index.html & \
info -f ./hello.info

The HTML output is plain. You can adapt it with CSS by adding
--css-include=FILENAME or --css-ref=URL.

Alternately you can write an Org Mode document and evaluate
(require ’ox-texinfo) to activate exporting to texinfo.

52/64

https://orgmode.org

46 Track changes with a version tracking
system like Mercurial or Git

For convenience, first initialize a version tracking repository like Mer-
curial or Git.

either Mercurial
hg init hello
or Git
git init hello
enter the repository folder
cd hello/

Now you can add new files with

in Mercurial
hg add FILE
in Git
git add FILE

And take a snapshot of changes with

in Mercurial
hg commit -m "a change description"
in Git
git commit -a -m "a change description"

It is good practice to always use a version tracking system.

For additional information and how to compare versions, go back in
time, or publish your code if you want to, see the Mercurial Guide or
the Git Tutorial.

53/64

https://mercurial-scm.org
https://mercurial-scm.org
https://git-scm.org
https://mercurial-scm.org/guide
https://git-scm.com/docs/gittutorial

47 Package with autoconf and automake

Create a configure.ac file with name, contact info and version.

dnl configure.ac
dnl Name, Version, and contact information.
AC_INIT([hello], [0.0.1], [myName@example.com])
Set a supported Guile version as @GUILE@, then init
GUILE_PKG([3.0])
GUILE_PROGS
GUILE_SITE_DIR
AC_PREFIX_PROGRAM([guile])
AM_INIT_AUTOMAKE([gnu])
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Add a Makefile.am with build rules. Only the start needs to be edited:

dist_bin_SCRIPTS = hello # program name
SUFFIXES = .scm .sh
SCHEME = hello.scm # source files
hello: $(SCHEME)

echo "#!/usr/bin/env bash" > "$@" && \
echo 'exec -a "$$0" guile' \

'-L "$$(dirname "$$(realpath "$$0")")"' \
'-L "$$(dirname "$$(realpath

"$$0")")/../share/guile/site/3.0/"' \↪→

'-s "$$0" "$$@"' \
>> "$@" && echo ";; exec done: !#" >> "$@" && \

cat "$<" >> "$@" && chmod +x "$@"
info_TEXINFOS = doc/hello.texi
add library files, prefix nobase_ preserves directories
nobase_site_DATA =

54/64

The rest of the Makefile.am can be copied verbatim:

Makefile.am technical details

where to install guile modules to import. See
https://www.gnu.org/software/automake/manual/html_node/Alte ⌋

rnative.html↪→

sitedir = $(datarootdir)/guile/site/$(GUILE_EFFECTIVE_VERSION)

GOBJECTS = $(nobase_site_DATA:%.scm=%.go)
nobase_go_DATA = $(GOBJECTS)
godir=$(libdir)/guile/$(GUILE_EFFECTIVE_VERSION)/site-ccachep

Make sure that the mtime of installed compiled files
is greater than that of installed source files. See:
http://lists.gnu.org/archive/html/guile-devel/2010-07/msg00 ⌋

125.html↪→

The missing underscore before DATA is intentional.
guile_install_go_files = install-nobase_goDATA
$(guile_install_go_files): install-nobase_siteDATA

EXTRA_DIST = $(SCHEME) $(info_TEXINFOS) $(nobase_site_DATA)
CLEANFILES = $(GOBJECTS) $(wildcard *~) $(dist_bin_SCRIPTS)
DISTCLEANFILES = $(nobase_site_DATA)

precompile all source files
.scm.go:

$(GUILE_TOOLS) compile $(GUILE_WARNINGS) \
-o "$@" "$<"

Autoconf and automake are easy to use for distros.

55/64

This assumes that the folder hello uses a Version tracking system.

Makefile.am basic additional files
.SECONDARY: ChangeLog AUTHORS
ChangeLog: ## create the ChangeLog from the history

echo "For user-visible changes, see the NEWS file" > "$@"
echo >> "$@"
if test -d ".hg"; \

then hg -R "$(dirname "$(realpath .hg)")" \
log --style changelog \
>> "$@"; fi

if test -d ".git"; \
then cd "$(dirname "$(realpath .git)")" \
&& git log --date-order --date=short \
| sed -e '/^commit.*$/d' \
| awk '/^Author/ {sub(/\\$/,""); getline t; print $0

t; next}; 1' \↪→

| sed -e 's/^Author: //g' \
| sed -e \

's/\(.*\)>Date: \([0-9]*-[0-9]*-[0-9]*\)/\2
\1>/g' \↪→

| sed -e 's/^\(.*\) \(\)\t\(.*\)/\3 \1 \2/g' \
>> "$@"; cd -; fi

AUTHORS: ## create the AUTHORS file from the history
touch "$@"
if test -d ".hg"; \

then hg -R "$(dirname "$(realpath .hg)")" \
--config extensions.churn= \
churn -t "{author}" >> "$@"; fi

if test -d ".git"; \
then cd "$(dirname "$(realpath .git)")" \

&& git log --format='%aN' \
| sort -u >> "$@"; cd -; fi

56/64

Now create a README and a NEWS file:

#+title: Hello

A simple example project.

* Requirements

- Guile version 3.0.10 or later.

* Build the project

#+begin_src bash
autoreconf -i && ./configure && make
#+end_src

* Create a distribution tarball

#+begin_src bash
autoreconf -i && ./configure && make dist
#+end_src

* License

GPLv3 or later.

hello 0.0.1

- initialized the project

And for the sake of this example, a simple hello.scm file:

(display "Hello World!\n")

57/64

47.1 Init a project with hall

To simplify the setup, start it by getting the tool guile-hall (named
Hall) as described in the manual under Distributing Guile Code. Then
create a new project:

hall init hello -a "My Name" \
-e "myName@example.com" \
--execute

cd hello && hall build --execute

Add --license to change the license; GPLv3 or later is the default.

Hall creates a configure.ac file with name, contact information and
version, and a Makefile.am with build rules. It also automatically
adds TEXINFO-rules for the folder doc/.

58/64

https://gitlab.com/a-sassmannshausen/guile-hall
https://www.gnu.org/software/guile/manual/html_node/Distributing-Guile-Code.html

48 Deploy a project to users

Enable people to access your project as a webserver behind nginx, as
clientside browser-app, or as Linux package (Guix tarball).

Browser: as webserver. On the web no one knows you’re a Scheme.

Guile provides a webserver module. A minimal webserver:

(import (web server)
(web request)
(web response)
(web uri))

(define (handler request body)
(define path (uri-path (request-uri request)))
(values (build-response

#:headers `((content-type . (text/plain)))
#:code 404)

(string-append "404 not found: " path)))
(define v4 #t)
;; choose either IPv4 or IPv6; to suport both, run twice.
(run-server handler 'http

(if v4 '(#:port 8081)
'(#:family AF_INET6 #:port 8081)))

An nginx SSL Terminator (/etc/nginx/sites-enabled/default):

server {
server_name domain.example.com;
location / {

proxy_pass http://localhost:8081;
}

}

Set up SSL support with certbot (this edits the config file).

59/64

https://www.gnu.org/s/guile/manual/guile.html#Web-Server
https://nginx.org/
https://certbot.eff.org/instructions?ws=nginx&os=pip

Browser again: clientside wasm. To run clientside, you can pack-
age your project with Hoot: build an interface and compile to wasm:

;; file: hoot.scm
(use-modules (hoot ffi)) ;; hoot-specific import

;; the interface
(define-foreign document-body "document" "body"

-> (ref null extern))
(define-foreign make-text-node "document" "createTextNode"

(ref string) -> (ref null extern))
(define-foreign append-child! "element" "appendChild"

(ref null extern) (ref null extern)
-> (ref null extern))

;; core code
(append-child! (document-body) ;; Your logic

(make-text-node "Hello, world!"))

Transpile with guild compile-wasm. If you run Guix:

guix shell guile-hoot guile-next -- \
guild compile-wasm -o hoot.wasm hoot.scm

Get reflection tools from Guile Hoot (licensed Apache 2.0) with Guix:

guix shell guile-hoot guile-next -- bash -c \
'cp $GUIX_ENVIRONMENT/share/guile-hoot/*/reflect*/{*.js, ⌋

*.wasm} ./'↪→

60/64

https://spritely.institute/hoot/

Load your interface:

/* file: hoot.js */
window.addEventListener("load", () =>

Scheme.load_main("./hoot.wasm", {
user_imports: { /* the interface from Javascript */

document: {
body() { return document.body; },
createTextNode: Document.prototype

.createTextNode.bind(document)
}, element: {

appendChild(parent, child) {
return parent.appendChild(child);}}}}));

Include reflect.js and hoot.js from a HTML page:

<!DOCTYPE html> <!-- file: hoot.html -->
<html><head><title>Hello Hoot</title>
<script type="text/javascript" src="reflect.js"></script>
<script type="text/javascript" src="hoot.js"></script>
</head><body><h1>Hoot Test</h1></body></html>

For local testing, hoot provides a minimal webserver:

guix shell guile-hoot guile-next -- \
guile -c '((@ (hoot web-server) serve))'

61/64

Linux: Guix tarball. The package is the tarball. — Ludovic

Guix can assemble a tarball of all dependencies. Add a guix.scm:

(import (gnu packages web) (gnu packages base) (gnu packages bash)
(gnu packages guile) (gnu packages guile-xyz)
(gnu packages pkg-config) (guix packages) (guix gexp)
(guix build-system gnu) (guix build-system guile)
(prefix (guix licenses) license:))

(define-public guile-doctests
(package
(name "guile-doctests") (version "0.0.1")
(source (local-file "." "" #:recursive? #t))
(build-system gnu-build-system) ;; uses autoconf and automake
(arguments
(list
#:modules `((guix build guile-build-system)

,@%default-gnu-imported-modules)
#:phases
(with-imported-modules `((guix build guile-build-system)

,@%default-gnu-imported-modules)
#~(modify-phases %standard-phases

(add-after 'install 'wrap
(lambda* (#:key inputs outputs #:allow-other-keys)

(let ((out (assoc-ref outputs "out"))
(effective-version (target-guile-effective-version)))

(wrap-program (string-append out "/bin/doctest")
`("PATH" ":" prefix

,(map (λ (x) (dirname (search-input-file inputs x)))
(list "/bin/guile" "/bin/bash")))

`("GUILE_LOAD_PATH" prefix
(,(string-append out "/share/guile/site/"

effective-version)
,(getenv "GUILE_LOAD_PATH")))

`("GUILE_LOAD_COMPILED_PATH" prefix
(,(string-append out "/lib/guile/"

effective-version "/site-ccache")
,(getenv "GUILE_LOAD_COMPILED_PATH")))))))))))

(propagated-inputs `(("guile" ,guile-3.0)
("pkg-config" ,pkg-config)
("bash" ,bash)
("guile-wisp" ,guile-wisp)
("coreutils" ,coreutils)))

(home-page "https://hg.sr.ht/~arnebab/guile-doctests")
(synopsis "Tests in procedure definitions")
(description "Guile module to keep tests in your procedure definition.")
(license license:lgpl3+)))

guile-doctests

62/64

First test building guix build -f guix.scm, then test running with
guix shell --pure -f guix.scm and once both work, create your
package with:

guix pack -e '(load "guix.scm")' \
-RR -S /bin=bin -S /share=share

Copy the generated tarball. In can be executed with:

mkdir hello && cd hello && tar xf TARBALL_FILE && \
./bin/doctest

Since this tarball generation is a bit finicky, there is a guile-doctests
package with a working example setup.

Once you have guix pack working, you can also create dockerfiles
and other packages to deploy into various publishing infrastructures.

To be continued: Scheme is in constant development and deploying
Guile programs is getting easier. Lilypond solved Windows.

Also see the Map of R7RS and the Scheme primer to keep learning.

You are ready.

Go and build a project you care about.

63/64

https://hg.sr.ht/~arnebab/guile-doctests
https://misc.lassi.io/2022/map-of-r7rs-small.html
https://spritely.institute/static/papers/scheme-primer.html

List of Links
draketo.de: https://www.draketo.de . 1
Guile: https://www.gnu.org/software/guile . 1
Attribution - Sharealike: https://creativecommons.org/licenses/by-sa/4.0/ . . 5
Real and Rational Numbers: https://www.gnu.org/software/guile/manual/ht

ml_node/Reals-and-Rationals.html . 20
r5rs numbers: https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-h

tml/r5rs_8.html#SEC50 . 20
IEEE 754: https://ieeexplore.ieee.org/document/8766229 20
recursion wins: http://www.draketo.de/light/english/recursion-wins 29
ice-nine: https://en.wikipedia.org/wiki/Ice-nine?oldid=1204900352 30
in the Guile Reference manual: https://www.gnu.org/software/guile/manual/

html_node/SRFI-Support.html . 30
srfi.schemers.org: https://srfi.schemers.org/ 30
literal: https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html 37
Revised Report on Scheme: https://standards.scheme.org/ 38
Vectors: https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:

__tex2page_sec_6.8 . 38
forestry commission technical paper 1993: https://cdn.forestresearch.gov.uk/

1993/09/fctp004.pdf . 39
Waldwissen: https://www.waldwissen.net/de/lebensraum-wald/baeume-und

-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial 39
BaumUndErde: https://www.baumunderde.de/stammgewicht-rechner/ 39
Exceptions: https://www.gnu.org/software/guile/manual/html_node/Exce

ptions.html . 42
srfi 64: https://srfi.schemers.org/srfi-64/srfi-64.html 43
the standard: https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#

TAG:__tex2page_sec_4.2.8 . 47
Guile Reference manual: https://www.gnu.org/s/guile/manual/guile.html . . 50
Guile Library: https://www.nongnu.org/guile-lib/doc/ 50
Scheme Requests for Implementation (SRFI): https://srfi.schemers.org/ 50
Scheme standards (RnRS): https://standards.scheme.org/ 50
r7rs-small: https://standards.scheme.org/corrected-r7rs/r7rs.html 50
pdf: https://standards.scheme.org/unofficial/errata-corrected-r7rs.pdf 50
tools and libraries: https://www.gnu.org/software/guile/libraries/ 50
Rosetta Code: https://rosettacode.org/wiki/Category:Scheme 50
texinfo: https://www.gnu.org/software/texinfo/ 50
Emacs: https://gnu.org/software/emacs . 50
Org Mode: https://orgmode.org . 52
Mercurial: https://mercurial-scm.org . 53
Git: https://git-scm.org . 53
Mercurial Guide: https://mercurial-scm.org/guide 53
Git Tutorial: https://git-scm.com/docs/gittutorial 53
guile-hall: https://gitlab.com/a-sassmannshausen/guile-hall 58
Distributing Guile Code: https://www.gnu.org/software/guile/manual/html

_node/Distributing-Guile-Code.html 58
webserver: https://www.gnu.org/s/guile/manual/guile.html#Web-Server . . . 59
nginx: https://nginx.org/ . 59
certbot: https://certbot.eff.org/instructions?ws=nginx&os=pip 59
Hoot: https://spritely.institute/hoot/ . 60
guile-doctests: https://hg.sr.ht/~arnebab/guile-doctests 63
Map of R7RS: https://misc.lassi.io/2022/map-of-r7rs-small.html 63
Scheme primer: https://spritely.institute/static/papers/scheme-primer.html . 63
draketo.de/software/programming-scheme: https://www.draketo.de/softwar

e/programming-scheme . 64

64/64

https://www.draketo.de
https://www.gnu.org/software/guile
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/software/guile/manual/html_node/Reals-and-Rationals.html
https://www.gnu.org/software/guile/manual/html_node/Reals-and-Rationals.html
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
https://ieeexplore.ieee.org/document/8766229
http://www.draketo.de/light/english/recursion-wins
https://en.wikipedia.org/wiki/Ice-nine?oldid=1204900352
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://srfi.schemers.org/
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html
https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:__tex2page_sec_6.8
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-8.html#TAG:__tex2page_sec_6.8
https://cdn.forestresearch.gov.uk/1993/09/fctp004.pdf
https://cdn.forestresearch.gov.uk/1993/09/fctp004.pdf
https://www.waldwissen.net/de/lebensraum-wald/baeume-und-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial
https://www.waldwissen.net/de/lebensraum-wald/baeume-und-waldpflanzen/laubbaeume/birke-eine-baumart-mit-potenzial
https://www.baumunderde.de/stammgewicht-rechner/
https://www.gnu.org/software/guile/manual/html_node/Exceptions.html
https://www.gnu.org/software/guile/manual/html_node/Exceptions.html
https://srfi.schemers.org/srfi-64/srfi-64.html
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#TAG:__tex2page_sec_4.2.8
https://standards.scheme.org/corrected-r7rs/r7rs-Z-H-6.html#TAG:__tex2page_sec_4.2.8
https://www.gnu.org/s/guile/manual/guile.html
https://www.nongnu.org/guile-lib/doc/
https://srfi.schemers.org/
https://standards.scheme.org/
https://standards.scheme.org/corrected-r7rs/r7rs.html
https://standards.scheme.org/unofficial/errata-corrected-r7rs.pdf
https://www.gnu.org/software/guile/libraries/
https://rosettacode.org/wiki/Category:Scheme
https://www.gnu.org/software/texinfo/
https://gnu.org/software/emacs
https://orgmode.org
https://mercurial-scm.org
https://git-scm.org
https://mercurial-scm.org/guide
https://git-scm.com/docs/gittutorial
https://gitlab.com/a-sassmannshausen/guile-hall
https://www.gnu.org/software/guile/manual/html_node/Distributing-Guile-Code.html
https://www.gnu.org/software/guile/manual/html_node/Distributing-Guile-Code.html
https://www.gnu.org/s/guile/manual/guile.html#Web-Server
https://nginx.org/
https://certbot.eff.org/instructions?ws=nginx&os=pip
https://spritely.institute/hoot/
https://hg.sr.ht/~arnebab/guile-doctests
https://misc.lassi.io/2022/map-of-r7rs-small.html
https://spritely.institute/static/papers/scheme-primer.html
https://www.draketo.de/software/programming-scheme
https://www.draketo.de/software/programming-scheme

Free Digital Version of

Naming and Logic
programming essentials with Scheme

If you enjoy this book,

please buy the print from

draketo.de/software/programming-scheme

Buy free licensed creations,

so I can create more.

https://www.draketo.de/software/programming-scheme

Get the gist of Lisp in practical steps.

This book guides you into the heart of pro-
gramming with Scheme, to give you a smooth
start into one of the oldest standardized and
thriving languages.

We are the namegivers,
the dreamers who build tools of sand and logic
to surpass the limits of our minds.

Choose your path
through a map of building blocks
to take on challenges by code.

From your first define
to deploying your appli-
cation.

	Preface
	The Map of Scheme
	Name a value with define
	Add comments with ;
	Compare numbers
	Use infix in logic
	Use logic with true and false
	Use named values in logic
	Name the result of logic with parentheses
	Name logic with define (
	Name a name with define
	Return the value of logic
	Name in define (with define
	Return a list of values with list
	Name the result of logic in one line with ()
	Name text with "
	Take decisions with cond
	Use fine-grained numbers with number-literals
	Use exact numbers with #e and quotients
	Turn exact numbers into decimals with exact->inexact
	Use math with the usual operators as logic
	Compare structural values with equal?
	Apply logic to a list of values with apply
	Get the arguments of named logic as list with . rest
	Change the value or logic of a defined name with set!
	Apply logic to each value in lists and ignoring the results with for-each
	Get the result of applying logic to each value in lists with map
	Reuse your logic with let-recursion
	Import pre-defined named logic and values with import
	Optimize for performance with ,profile
	Create nameless logic with lambda
	Extend a list with cons
	Mutate partially shared state with list-set!
	Apply partial procedures with srfi :26 cut
	Get and resolve names used in code with quote, eval, and module-ref
	Use r7rs datatypes, e.g. with vector-map
	Name structured values with define-record-type
	Create your own modules with define-module
	Handle errors using with-exception-handler
	Debug with backtraces
	Test your code with srfi 64
	Define derived logic structures with define-syntax-rule
	Build value-lists with quasiquote and unquote
	Merge lists with append or unquote-splicing
	Document procedures with docstrings
	Read the docs
	Create a manual with texinfo
	Track changes with a version tracking system like Mercurial or Git
	Package with autoconf and automake
	Init a project with hall

	Deploy a project to users

