
Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Willkommen bei Verteilte Systeme!

Von Datenbanken
über Webdienste

bis zu p2p und Sensornetzen.

⌣̈

Heute: Replikation, CALM und CRDTs.
Versprich nur, was du halten kannst.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Ziele

Ziele

Ihr kennt verschiedene Arten der Replikation.
Ihr versteht, dass Replikation zu Inkonsistenzen führen kann.
Ihr kennt das CALM Theorem.
Ihr versteht, dass Koordination vermieden werden kann und
dies zu einfacheren Systemen führt.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Ablauf heute

Ablauf heute

Replikation
Was ist Availability?
Welche Konsistenzmodelle gibt es?
Lässt sich Koordination vermeiden?

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Replikation

Replikation
Speichern von Kopien auf mehreren Maschinen, die über Netzwerk
verbunden sind.

Gründe für Replikation:

Geographische Skalierung: Daten eines Nutzers näher am
Nutzer –> Verringerung der Latenz
Anwendung funktioniert trotz ausgefallenen Knoten.
Größenmäßige Skalierung: Mehr Nutzer können die Anwendung
gleichzeitig verwenden.1

Annahme: Gesamter Datensatz passt auf eine Maschine –> Keine
Partitionierung (Sharding)

1Das machen wir bei Disy: Synchronisierte Caches
Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Replikation

Übersicht Replikation

3 Arten von Replikation werden unterschieden:

Single Leader
Multi Leader
Leaderless

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Single Leader

Single Leader

Replika: Knoten, der eine Kopie speichert
Leader: Eine Replika mit Schreibrecht
Schreiben: Anfrage an Leader
Leader schreibt lokal
Sendet geänderte Daten an alle anderen
Replikas (Follower)
Follower speichern die Änderungen lokal
Lesen auch von Followern

Hierarchie ähnlich zu NTP.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Multi Leader

Multi Leader Replication

Nachteile Single Leader
Leader nicht erreichbar ⇒ keine Änderungen
Einzelner Leader → Flaschenhals

Anwendungen
Progressive Apps: Offline arbeiten
Kollaborative Apps: Etherpad, Cryptpad, Google Docs etc.

Nachteil Multi Leader
Lösung von Schreibkonflikten nötig

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Multi Leader

Leaderless Replication

Verbreitet durch Amazons Dynamo DB
Auch Riak, Cassandra, Voldemort
Writes auf jedem Knoten
Meist „Quorum“ Reads und Writes.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Multi Leader

Quorum

Sende jeden write und read an n Knoten
write ist erfolgreich wenn w Knoten ihn bestätigen
read ist erfolgreich wenn r Knoten ihn bestätigen

Quorum Bedingung: w + r > n:
garantiert Überlapp zwischen w-Knoten und r-Knoten
w < n kann bei ausgefallenen Knoten schreiben
r < n kann bei ausgefallenen Knoten lesen
w > n

2 kann write-write Konflikte vermeiden

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Multi Leader

Quorum: Write-Write-Konflikte vermeiden

Wenn w ≤ n
2 können 2

Nutzer widersprüchliche
Daten schreiben.
Beim Lesen erkennbar, da
r > n − w
write-write Konflikt oder
stale data

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Multi Leader

Zusammenfassung Replikation

Single, Multi, Leaderless
(a)synchrone Replikation
Inkonsistenzen möglich
Quorum Bedingung: r + w > n

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Availability

Availability

Total Available / High Available
Sticky Available
Unavailable

Literatur: Highly Available Transactions: Virtues and Limitations
Bailis et al. (2013).

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Availability

Total Available / High Available

Antwort erhält, wer einen korrekten (nicht versagenden) Server
kontaktieren kann
Auch bei Netzwerkpartitionen zwischen Servern

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Availability

Sticky Available

Antwort erhält, wer einen Server kontaktieren kann, der den
gesamten, dem Nutzer bekannten Zustand beinhaltet
Auch bei Netzwerkpartitionen zwischen Servern

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Availability

Sticky Available - Beispiel

Daten auf mehrere Server repliziert
Jede Replika enthält alle Daten
Nutzer kontaktiert immer denselben Server
⇒ Sticky Available

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Availability

Unavailable

System ist nicht verfügbar bei Netzwerkpartitionen.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Consistency

Consistency

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Bewertung

Consistency und Availability - Bewertung

Spektrum möglicher Consistency und Availability.
Verschiedene Teile eines Systems können verschiedene
Anforderungen haben.
Informierte Entscheidungen treffen!
Unsere Anwendung muss nicht in jedem Fall 100% konsistent
sein.

Manchmal reicht eine Entschuldigung.
Aber angreifbar! (s. ACIDRain Paper (Warszawski and Bailis,
2017))

Können wir uns auf Angaben von Herstellern verlassen?

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs

http://www.bailis.org/papers/acidrain-sigmod2017.pdf


Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Bewertung

Zusammenfassung

Konsistenzmodelle definieren Garantien
Konsistenzmodelle häufig unterschiedlich definiert
Entscheiden welche Garantien unser System benötigt
Verteilte Systeme sind kompliziert und haben Bugs

→ Können wir die Komplexität von Koordination vermeiden?

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

CALM Theorem: Monotonie für Eventual Consistency

Consistency as Logical Monotonicity (CALM). A program
has a consistent, coordination-free distributed implementa-
tion if and only if it is monotonic.

Paper: Keeping CALM: when distributed consistency is easy;
(Hellerstein and Alvaro, 2019)

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

CALM: Essential vs. Accidental Coordination

Ähnlich zu Komplexität (No Silver Bullet; Brooks; 1987) kann
Koordination in essentielle und versehentliche Koordination
unterteilt werden.
Essentielle Koordination:

Ist nötig um bestimmte Garantien geben zu können.
Versehentliche Koordination:

Kann mit einem anderen Design vermieden werden.
–> Welche Probleme können konsistent, ohne Koordination,
verteilt gelöst werden und welche nicht?

Essenziell vs. Versehentlich

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

Monotonicity: Distributed Deadlock Detection
Waits-for-graph: Kante i –> j bedeutet, dass Transaktion i auf ein
Lock wartet, das von Transaktion j gehalten wird.

Ein Zyklus im Graph entspricht einem Deadlock.

Welche Deadlocks enthält das System?

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

Distributed Deadlock Detection - Berechnung
Jede Maschine übermittelt ihre Kanten.

Können zusätzliche Kanten Deadlocks auflösen / entfernen?
–> Nein. Zusätzliche Kanten führen nur zu evtl. zusätzlichen
Deadlocks. –> monoton!

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

CALM: Distributed Garbage Collection
Objektgraph: Kante entspricht Referenz von einem Objekt zu einem
anderen.

Garbage Collection: finde Objekte, die nicht von Root aus erreichbar
sind.

Welche Objekte können entfernt werden?
Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

Distributed Garbage Collection - Berechnung
Jede Maschine übermittelt ihre Kanten.

Können weitere Kanten dazu führen unser Ergebnis ändern?

–> Ja. Eine Kante von 1 zu 5 würde dazu führen, dass 5 und 6 nicht
collected werden können –> nicht monoton! –> Wir benötigen
Koordination

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

Deadlocks vs. Garbage Collection

Beide Probleme werden ähnlich gelöst.
Deadlocks benötigt im Gegensatz zu Garbage Collection keine
Koordination.

Was ist der Unterschied?

Bei Deadlocks fragen wir, ob ein Zyklus existiert.
Bei Garbage Collection fragen wir, ob kein Pfad existiert.

Die 2te Frage kann nur beantwortet werden, wenn wir alle Kanten
gesehen haben.

–> Solange wir ∀ und ∄ verbieten bleiben wir monoton.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CALM Theorem

Composability

Wenn die Funktionen f und g monoton sind, ist auch f (g(x))
monoton.

–> Monotone Programme aus monotonen Operationen aufbauen.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Zusammenfassung

Zusammenfassung

Essenzielle vs. versehentliche Koordination
Motonon: Vermeidet „für alle“ und „es gibt kein“

Koordination minimieren.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CRDTs

CRDTs

Datenstrukturen, die weniger Garantien brauchen.

Paper: A Comprehensive study of Convergent and Commutative
Replicated Data Types; Shapiro et al. (2011)

Wir unterscheiden:

Operation Based Replication: CmRDT
State Based Replication: CvRDT

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CRDTs

State Based Replication

Wir updaten den State eines Objekts lokal in einer Replika.
Der geupdatete State wird an alle anderen Replikas übermittelt
und dort mit dem jeweiligen lokalen State gemerged.
Wenn State + Merge assoziativ, kommmutativ und idempotent
sind, wird keine Koordination benötigt.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CRDTs

Beispiel: Integer, max

assoziativ: max(max(1,2),3) =
max(1,max(2,3))
kommutativ: max(1,2) = max(2,1)
idempotent: max(1,2) =
max(max(1,2),2)

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CRDTs

Operation Based Replication

Das System repliziert Operationen anstatt State.
Benötigt einen zuverlässigen broadcast channel, der die vom
CRDT bestimmte Ordnung berücksichtigt (Beispiel: kausal).
Operationen die nach der Ordnung gleichzeitig (concurrent)
stattfinden, müssen kommutativ sein.

Beispiel:

+7, -5 = -5, +7

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

CRDTs

Operation Based vs. State Based

State Based:
Simpler, da keine Ordnung der Nachrichten benötigt wird und
jede Änderung lokal betrachtet werden kann.
Nachrichten müssen irgendwann ankommen, aber Reihenfolge
ist egal.
Überträgt immer gesamten State.
Keine Gruppenzugehörigkeit nötig.

Operation Based:
Komplexer, sämtliche Nachrichten betrachtet.
Überträgt nur die Operationen. („diff“)
Benötigt Gruppenzugehörigkeit (alle Beteiligten kennen).

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Beispiele

G-Set (Grow only)

state = Set()
def add(element):

state.add(element)

def merge(other_state):
state.union(other_state)

def contains(element):
return element in state

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Beispiele

2P Set (2 Phase)

state = {added: Set(), removed: Set()}
def add(element):

state.added.add(element)
def remove(element):

state.removed.add(element)
def merge(other_state):

state = {added: state.added.union(other_state.added),
removed: state.removed.union(other_state.removed)}

def contains(element):
return element in state.added and not element in state.removed

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Beispiele

Einschränkung 2P-Set?

einmal hinzugefügtes Element kann nie wieder hinzugefügt
werden.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Beispiele

Praxis: Shopping Cart

Können wir den Shopping Cart einer Webanwendung monoton
gestalten?

Idee: Wir modellieren den Inhalt des Shopping Cart als Set.

Das Hinzufügen eines Artikels ist damit monoton und wir benötigen
keine Koordination.

Aber wie können wir einen Artikel aus dem Shopping Cart entfernen?

Idee: Wir verwalten ein Add-Set und ein Remove-Set.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Beispiele

Shopping Cart: Bewertung

Verwaltung des Shopping Carts ohne Koordination.

Brauchen Koordination, sobald wir den Einkauf tätigen.

–> müssen sicherstellen, dass alle Änderungen vorher gesehen
wurden.

–> Koordination im System reduzieren, nicht komplett verhindern.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Beispiele

Weitere CRDTs

PN-Set: Counter für jedes Element, Wert des Coutner
entscheidet über Set-Zugehörigkeit.
2P2P Graph: Je ein 2P Set für Knoten und Kanten.
Verschiedene Implementierungen von Registern.
Datentypen für kollaborative Textbearbeitung.

→ Conflict-free_replicated_data_type#Known_CRDTs

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs

https://en.wikipedia.org/w/index.php?title=Conflict-free_replicated_data_type&oldid=1007775359#Known_CRDTs


Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Zusammenfassung

Zusammenfassung

CRDTs können genutzt werden, um Koordination zu vermeiden
oder zumindest einzuschränken.
CRDTs benötigen eine Form der Garbage Collection, um
performant zu bleiben (z.B. Schnappschuss — „Keyframe“).

Garbage Collection benötigt wiederum Koordination.
CRDTs werden in Verteilten Systemen eingesetzt: Riak, Redis,
Dynamo

Ein nur auf CRDTs aufbauendere Algorithmus ist
Koordinationsfrei

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Quellen

Quellen
Highly Available Transactions: Virtues and Limitations; (Bailis
et al., 2013)
Weak Consistency: a generalized theory and optimistic
implementations for distributed transactions; (Adya and Liskov,
1999)
Designing Data-Intensive Application: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems; (Kleppmann,
2017)
Keeping CALM: when distributed consistency is easy;
(Hellerstein and Alvaro, 2019)
A Comprehensive study of Convergent and Commutative
Replicated Data Types; (Shapiro et al., 2011)
Architecture of Open Source Applications; (Brown and Wilson,
2011)

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Abschluss

Ich wünsche Ihnen unkoordinierten Erfolg!

⌣̈

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Literatur

Verweise I

Adya, A. and Liskov, B. (1999). Weak consistency: A generalized
theory and optimistic implementations for distributed transactions.
PhD thesis:
http://pmg.csail.mit.edu/papers/adya-phd.pdf.

Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J. M.,
and Stoica, I. (2013). Highly available transactions: Virtues and
limitations. Proc. VLDB Endow., 7(3):181–192.

Brown, A. F. and Wilson, G. (2011). The architecture of open
source applications. PDF from http:
//vgc.poly.edu/~juliana/pub/vistrails-aosa.pdf.

Hellerstein, J. M. and Alvaro, P. (2019). Keeping CALM: when
distributed consistency is easy. CoRR, abs/1901.01930.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs

http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://vgc.poly.edu/~juliana/pub/vistrails-aosa.pdf
http://vgc.poly.edu/~juliana/pub/vistrails-aosa.pdf


Literatur

Verweise II

Kleppmann, M. (2017). Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and Maintainable Systems.
O’Reilly Media.

Shapiro, M., Preguiça, N., Baquero, C., and Zawirski, M. (2011). A
comprehensive study of convergent and commutative replicated
data types. PDF from
https://hal.inria.fr/inria-00555588/document or
https:
//dsf.berkeley.edu/cs286/papers/crdt-tr2011.pdf.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs

https://hal.inria.fr/inria-00555588/document
https://dsf.berkeley.edu/cs286/papers/crdt-tr2011.pdf
https://dsf.berkeley.edu/cs286/papers/crdt-tr2011.pdf


Literatur

Verweise III

Warszawski, T. and Bailis, P. (2017). Acidrain: Concurrency-related
attacks on database-backed web applications. In Proceedings of
the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, page 5–20, New York, NY, USA. Association for
Computing Machinery.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs


	Einstieg
	Ziele
	Ablauf heute

	Replikation
	Replikation
	Single Leader
	Multi Leader

	Availability
	Availability

	Consistency
	Consistency
	Bewertung

	CALM Theorem
	CALM Theorem
	Zusammenfassung

	CRDTs
	CRDTs
	Beispiele
	Zusammenfassung

	Quellen
	Quellen

	Abschluss
	Abschluss

	Anhang
	
	Literatur


