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Willkommen bei Verteilte Systeme!

Von Datenbanken
über Webdienste

bis zu p2p und Sensornetzen.

⌣̈

Heute: Replikation, CALM und CRDTs.
Versprich nur, was du halten kannst.
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Ziele

Ziele

Ihr kennt verschiedene Arten der Replikation.
Ihr versteht, dass Replikation zu Inkonsistenzen führen kann.
Ihr kennt das CALM Theorem.
Ihr versteht, dass Koordination vermieden werden kann und
dies zu einfacheren Systemen führt.
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Ablauf heute

Ablauf heute

Replikation
Was ist Availability?
Welche Konsistenzmodelle gibt es?
Lässt sich Koordination vermeiden?
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Replikation

Replikation
Speichern von Kopien auf mehreren Maschinen, die über Netzwerk
verbunden sind.

Gründe für Replikation:

Geographische Skalierung: Daten eines Nutzers näher am
Nutzer –> Verringerung der Latenz
Anwendung funktioniert trotz ausgefallenen Knoten.
Größenmäßige Skalierung: Mehr Nutzer können die Anwendung
gleichzeitig verwenden.1

Annahme: Gesamter Datensatz passt auf eine Maschine –> Keine
Partitionierung (Sharding)

1Das machen wir bei Disy: Synchronisierte Caches
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Replikation

Übersicht Replikation

3 Arten von Replikation werden unterschieden:

Single Leader
Multi Leader
Leaderless
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Single Leader

Single Leader

Replika: Knoten, der eine Kopie speichert
Leader: Eine Replika mit Schreibrecht
Schreiben: Anfrage an Leader
Leader schreibt lokal
Sendet geänderte Daten an alle anderen
Replikas (Follower)
Follower speichern die Änderungen lokal
Lesen auch von Followern

Hierarchie ähnlich zu NTP.
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Multi Leader

Multi Leader Replication

Nachteile Single Leader
Leader nicht erreichbar ⇒ keine Änderungen
Einzelner Leader → Flaschenhals

Anwendungen
Progressive Apps: Offline arbeiten
Kollaborative Apps: Etherpad, Cryptpad, Google Docs etc.

Nachteil Multi Leader
Lösung von Schreibkonflikten nötig
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Multi Leader

Leaderless Replication

Verbreitet durch Amazons Dynamo DB
Auch Riak, Cassandra, Voldemort
Writes auf jedem Knoten
Meist „Quorum“ Reads und Writes.
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Multi Leader

Quorum

Sende jeden write und read an n Knoten
write ist erfolgreich wenn w Knoten ihn bestätigen
read ist erfolgreich wenn r Knoten ihn bestätigen

Quorum Bedingung: w + r > n:
garantiert Überlapp zwischen w-Knoten und r-Knoten
w < n kann bei ausgefallenen Knoten schreiben
r < n kann bei ausgefallenen Knoten lesen
w > n

2 kann write-write Konflikte vermeiden
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Multi Leader

Quorum: Write-Write-Konflikte vermeiden

Wenn w ≤ n
2 können 2

Nutzer widersprüchliche
Daten schreiben.
Beim Lesen erkennbar, da
r > n − w
write-write Konflikt oder
stale data
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Multi Leader

Zusammenfassung Replikation

Single, Multi, Leaderless
(a)synchrone Replikation
Inkonsistenzen möglich
Quorum Bedingung: r + w > n
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Availability

Availability

Total Available / High Available
Sticky Available
Unavailable

Literatur: Highly Available Transactions: Virtues and Limitations
Bailis et al. (2013).
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Availability

Total Available / High Available

Antwort erhält, wer einen korrekten (nicht versagenden) Server
kontaktieren kann
Auch bei Netzwerkpartitionen zwischen Servern
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Availability

Sticky Available

Antwort erhält, wer einen Server kontaktieren kann, der den
gesamten, dem Nutzer bekannten Zustand beinhaltet
Auch bei Netzwerkpartitionen zwischen Servern
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Availability

Sticky Available - Beispiel

Daten auf mehrere Server repliziert
Jede Replika enthält alle Daten
Nutzer kontaktiert immer denselben Server
⇒ Sticky Available
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Availability

Unavailable

System ist nicht verfügbar bei Netzwerkpartitionen.

Arne Babenhauserheide und Carlo Götz
Replikation, CALM und CRDTs



Einstieg Replikation Availability Consistency CALM Theorem CRDTs Quellen Abschluss

Consistency

Consistency
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Bewertung

Consistency und Availability - Bewertung

Spektrum möglicher Consistency und Availability.
Verschiedene Teile eines Systems können verschiedene
Anforderungen haben.
Informierte Entscheidungen treffen!
Unsere Anwendung muss nicht in jedem Fall 100% konsistent
sein.

Manchmal reicht eine Entschuldigung.
Aber angreifbar! (s. ACIDRain Paper (Warszawski and Bailis,
2017))

Können wir uns auf Angaben von Herstellern verlassen?
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Bewertung

Zusammenfassung

Konsistenzmodelle definieren Garantien
Konsistenzmodelle häufig unterschiedlich definiert
Entscheiden welche Garantien unser System benötigt
Verteilte Systeme sind kompliziert und haben Bugs

→ Können wir die Komplexität von Koordination vermeiden?
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CALM Theorem

CALM Theorem: Monotonie für Eventual Consistency

Consistency as Logical Monotonicity (CALM). A program
has a consistent, coordination-free distributed implementa-
tion if and only if it is monotonic.

Paper: Keeping CALM: when distributed consistency is easy;
(Hellerstein and Alvaro, 2019)
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CALM Theorem

CALM: Essential vs. Accidental Coordination

Ähnlich zu Komplexität (No Silver Bullet; Brooks; 1987) kann
Koordination in essentielle und versehentliche Koordination
unterteilt werden.
Essentielle Koordination:

Ist nötig um bestimmte Garantien geben zu können.
Versehentliche Koordination:

Kann mit einem anderen Design vermieden werden.
–> Welche Probleme können konsistent, ohne Koordination,
verteilt gelöst werden und welche nicht?

Essenziell vs. Versehentlich
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CALM Theorem

Monotonicity: Distributed Deadlock Detection
Waits-for-graph: Kante i –> j bedeutet, dass Transaktion i auf ein
Lock wartet, das von Transaktion j gehalten wird.

Ein Zyklus im Graph entspricht einem Deadlock.

Welche Deadlocks enthält das System?
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CALM Theorem

Distributed Deadlock Detection - Berechnung
Jede Maschine übermittelt ihre Kanten.

Können zusätzliche Kanten Deadlocks auflösen / entfernen?
–> Nein. Zusätzliche Kanten führen nur zu evtl. zusätzlichen
Deadlocks. –> monoton!
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CALM Theorem

CALM: Distributed Garbage Collection
Objektgraph: Kante entspricht Referenz von einem Objekt zu einem
anderen.

Garbage Collection: finde Objekte, die nicht von Root aus erreichbar
sind.

Welche Objekte können entfernt werden?
Arne Babenhauserheide und Carlo Götz
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CALM Theorem

Distributed Garbage Collection - Berechnung
Jede Maschine übermittelt ihre Kanten.

Können weitere Kanten dazu führen unser Ergebnis ändern?

–> Ja. Eine Kante von 1 zu 5 würde dazu führen, dass 5 und 6 nicht
collected werden können –> nicht monoton! –> Wir benötigen
Koordination
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CALM Theorem

Deadlocks vs. Garbage Collection

Beide Probleme werden ähnlich gelöst.
Deadlocks benötigt im Gegensatz zu Garbage Collection keine
Koordination.

Was ist der Unterschied?

Bei Deadlocks fragen wir, ob ein Zyklus existiert.
Bei Garbage Collection fragen wir, ob kein Pfad existiert.

Die 2te Frage kann nur beantwortet werden, wenn wir alle Kanten
gesehen haben.

–> Solange wir ∀ und ∄ verbieten bleiben wir monoton.
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CALM Theorem

Composability

Wenn die Funktionen f und g monoton sind, ist auch f (g(x))
monoton.

–> Monotone Programme aus monotonen Operationen aufbauen.
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Zusammenfassung

Zusammenfassung

Essenzielle vs. versehentliche Koordination
Motonon: Vermeidet „für alle“ und „es gibt kein“

Koordination minimieren.
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CRDTs

CRDTs

Datenstrukturen, die weniger Garantien brauchen.

Paper: A Comprehensive study of Convergent and Commutative
Replicated Data Types; Shapiro et al. (2011)

Wir unterscheiden:

Operation Based Replication: CmRDT
State Based Replication: CvRDT
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CRDTs

State Based Replication

Wir updaten den State eines Objekts lokal in einer Replika.
Der geupdatete State wird an alle anderen Replikas übermittelt
und dort mit dem jeweiligen lokalen State gemerged.
Wenn State + Merge assoziativ, kommmutativ und idempotent
sind, wird keine Koordination benötigt.
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CRDTs

Beispiel: Integer, max

assoziativ: max(max(1,2),3) =
max(1,max(2,3))
kommutativ: max(1,2) = max(2,1)
idempotent: max(1,2) =
max(max(1,2),2)
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CRDTs

Operation Based Replication

Das System repliziert Operationen anstatt State.
Benötigt einen zuverlässigen broadcast channel, der die vom
CRDT bestimmte Ordnung berücksichtigt (Beispiel: kausal).
Operationen die nach der Ordnung gleichzeitig (concurrent)
stattfinden, müssen kommutativ sein.

Beispiel:

+7, -5 = -5, +7
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CRDTs

Operation Based vs. State Based

State Based:
Simpler, da keine Ordnung der Nachrichten benötigt wird und
jede Änderung lokal betrachtet werden kann.
Nachrichten müssen irgendwann ankommen, aber Reihenfolge
ist egal.
Überträgt immer gesamten State.
Keine Gruppenzugehörigkeit nötig.

Operation Based:
Komplexer, sämtliche Nachrichten betrachtet.
Überträgt nur die Operationen. („diff“)
Benötigt Gruppenzugehörigkeit (alle Beteiligten kennen).
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Beispiele

G-Set (Grow only)

state = Set()
def add(element):

state.add(element)

def merge(other_state):
state.union(other_state)

def contains(element):
return element in state
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Beispiele

2P Set (2 Phase)

state = {added: Set(), removed: Set()}
def add(element):

state.added.add(element)
def remove(element):

state.removed.add(element)
def merge(other_state):

state = {added: state.added.union(other_state.added),
removed: state.removed.union(other_state.removed)}

def contains(element):
return element in state.added and not element in state.removed
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Beispiele

Einschränkung 2P-Set?

einmal hinzugefügtes Element kann nie wieder hinzugefügt
werden.
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Beispiele

Praxis: Shopping Cart

Können wir den Shopping Cart einer Webanwendung monoton
gestalten?

Idee: Wir modellieren den Inhalt des Shopping Cart als Set.

Das Hinzufügen eines Artikels ist damit monoton und wir benötigen
keine Koordination.

Aber wie können wir einen Artikel aus dem Shopping Cart entfernen?

Idee: Wir verwalten ein Add-Set und ein Remove-Set.
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Beispiele

Shopping Cart: Bewertung

Verwaltung des Shopping Carts ohne Koordination.

Brauchen Koordination, sobald wir den Einkauf tätigen.

–> müssen sicherstellen, dass alle Änderungen vorher gesehen
wurden.

–> Koordination im System reduzieren, nicht komplett verhindern.
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Beispiele

Weitere CRDTs

PN-Set: Counter für jedes Element, Wert des Coutner
entscheidet über Set-Zugehörigkeit.
2P2P Graph: Je ein 2P Set für Knoten und Kanten.
Verschiedene Implementierungen von Registern.
Datentypen für kollaborative Textbearbeitung.

→ Conflict-free_replicated_data_type#Known_CRDTs

Arne Babenhauserheide und Carlo Götz
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Zusammenfassung

Zusammenfassung

CRDTs können genutzt werden, um Koordination zu vermeiden
oder zumindest einzuschränken.
CRDTs benötigen eine Form der Garbage Collection, um
performant zu bleiben (z.B. Schnappschuss — „Keyframe“).

Garbage Collection benötigt wiederum Koordination.
CRDTs werden in Verteilten Systemen eingesetzt: Riak, Redis,
Dynamo

Ein nur auf CRDTs aufbauendere Algorithmus ist
Koordinationsfrei
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Quellen

Quellen
Highly Available Transactions: Virtues and Limitations; (Bailis
et al., 2013)
Weak Consistency: a generalized theory and optimistic
implementations for distributed transactions; (Adya and Liskov,
1999)
Designing Data-Intensive Application: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems; (Kleppmann,
2017)
Keeping CALM: when distributed consistency is easy;
(Hellerstein and Alvaro, 2019)
A Comprehensive study of Convergent and Commutative
Replicated Data Types; (Shapiro et al., 2011)
Architecture of Open Source Applications; (Brown and Wilson,
2011)
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Abschluss

Ich wünsche Ihnen unkoordinierten Erfolg!

⌣̈
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